pytutorial/numpy/bits_and_integers​/README.md
David Rotermund c5165a6507
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-27 16:07:54 +01:00

5 KiB
Raw Permalink Blame History

Bits and Integers

{:.no_toc}

* TOC {:toc}

The goal

Manipulation of integers and their bits

Questions to David Rotermund

numpy.ndarray.byteswap

ndarray.byteswap(inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number are swapped individually.

inplace : bool, optional

If True, swap bytes in-place, default is False.

import numpy as np

v = np.uint16(255)

print(f"{v:016b}")  # -> 0000000011111111

print(f"{v.byteswap():016b}")  # -> 1111111100000000

numpy.bitwise_and

numpy.bitwise_and(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Compute the bit-wise AND of two arrays element-wise.

Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator &.

import numpy as np

a = [True, True, False, False]
b = [True, False, True, False]

u = 3
v = 5

print(f"{u:04b}")  # -> 0011
print(f"{v:04b}")  # -> 0101

print(np.bitwise_and(a, b)) # -> [ True False False False]
print(f"{np.bitwise_and(u, v):04b}") # -> 0001

numpy.bitwise_or

numpy.bitwise_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) 

Compute the bit-wise OR of two arrays element-wise.

Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator |.

import numpy as np

a = [True, True, False, False]
b = [True, False, True, False]

u = 3
v = 5

print(f"{u:04b}")  # -> 0011
print(f"{v:04b}")  # -> 0101

print(np.bitwise_or(a, b))  # -> [ True  True  True False]
print(f"{np.bitwise_or(u, v):04b}")  # -> 0111

numpy.bitwise_xor

numpy.bitwise_xor(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Compute the bit-wise XOR of two arrays element-wise.

Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ^.

import numpy as np

a = [True, True, False, False]
b = [True, False, True, False]

u = 3
v = 5

print(f"{u:04b}")  # -> 0011
print(f"{v:04b}")  # -> 0101

print(np.bitwise_xor(a, b))  # -> [False  True  True False]
print(f"{np.bitwise_xor(u, v):04b}")  # -> 0110

bitwise_not

bitwise_not is an alias for invert

numpy.invert(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Compute bit-wise inversion, or bit-wise NOT, element-wise.

Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ~.

For signed integer inputs, the twos complement is returned.

import numpy as np

a = [True, True, False, False]

u = 3
v = np.uint8(u)

print(f"{u:08b}")  # -> 00000011
print(f"{v:08b}")  # -> 00000011

print(np.bitwise_not(a))  # -> [False False  True  True]
print(f"{np.bitwise_not(u)}")  # -> -4
print(f"{np.bitwise_not(v):08b}")  # -> 11111100

numpy.left_shift

numpy.left_shift(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Shift the bits of an integer to the left.

Bits are shifted to the left by appending x2 0s at the right of x1. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying x1 by 2**x2

numpy.right_shift

numpy.right_shift(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])

Shift the bits of an integer to the right.

Bits are shifted to the right x2. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing x1 by 2**x2.

numpy.binary_repr

numpy.binary_repr(num, width=None)

Return the binary representation of the input number as a string.