pytutorial/numpy/roc/README.md
David Rotermund 6cc6c9e48b
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2024-02-16 00:37:22 +01:00

3.4 KiB

ROC

{:.no_toc}

* TOC {:toc}

Top

Questions to David Rotermund

The following code is for the case where the amount of data for both classes is the same.

Test data

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(1)

a_x = rng.normal(1.5, 1.0, size=(5000))
b_x = rng.normal(0.0, 1.0, size=(5000))


ab_x = np.concatenate([a_x, b_x])
edges = np.histogram_bin_edges(ab_x, bins=100, range=None, weights=None)

h_a, _ = np.histogram(a_x, bins=edges)
h_b, _ = np.histogram(b_x, bins=edges)

h_a = h_a.astype(np.float32)
h_b = h_b.astype(np.float32)

h_a /= h_a.sum()
h_b /= h_b.sum()

edges = (edges[1:] + edges[:-1]) / 2.0

plt.plot(edges, h_a, "c.", label="Class -1")
plt.plot(edges, h_b, "m.", label="Class +1")
plt.ylabel("Probability of a value")
plt.ylabel("Edge center")
plt.legend()
plt.show()

Image1

Find the cumsum maximum

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(1)

a_x = rng.normal(1.5, 1.0, size=(5000))
b_x = rng.normal(0.0, 1.0, size=(5000))

data_data = np.concatenate([a_x, b_x])
data_class = np.concatenate(
    [np.full_like(a_x, -1 / a_x.shape[0]), np.full_like(b_x, +1 / b_x.shape[0])]
)
idx = np.argsort(data_data)

data_data = data_data[idx]
data_class = data_class[idx]

data_cumsum = np.cumsum(data_class)

plt.plot(data_cumsum)
plt.plot(
    [np.argmax(data_cumsum), np.argmax(data_cumsum)], [0, np.max(data_cumsum)], "k--"
)
plt.ylabel("Cumsum of the classes")
plt.xlabel("Sorted sample id")
plt.show()

Image2

How to create an estimate from the ROC cumsum maximum

import numpy as np
import matplotlib.pyplot as plt

rng = np.random.default_rng(1)

a_x = rng.normal(1.5, 1.0, size=(5000))
b_x = rng.normal(0.0, 1.0, size=(5000))

data_data = np.concatenate([a_x, b_x])
data_class = np.concatenate(
    [np.full_like(a_x, -1 / a_x.shape[0]), np.full_like(b_x, +1 / b_x.shape[0])]
)
data_class_id = np.concatenate([np.full_like(a_x, -1), np.full_like(b_x, +1)])
idx = np.argsort(data_data)

data_data = data_data[idx]
data_class = data_class[idx]
data_class_id = data_class_id[idx]

data_cumsum = np.cumsum(data_class)
border = np.argmax(np.abs(data_cumsum))

if data_cumsum[border] < 0:
    estimate = np.concatenate(
        (
            np.full_like(data_class[: border + 1], -1),
            np.full_like(data_class[border + 1 :], +1),
        )
    )

else:
    estimate = np.concatenate(
        (
            np.full_like(data_class[: border + 1], +1),
            np.full_like(data_class[border + 1 :], -1),
        )
    )


performance = 100.0 * (data_class_id == estimate).sum() / data_class_id.shape[0]
print(f"Performance: {performance}% correct")

plt.subplot(2, 1, 1)
idx_a = np.where(data_class < 0)[0]
idx_b = np.where(data_class > 0)[0]
idx = np.arange(0, data_class.shape[0])

plt.plot(data_data[idx_a], np.zeros_like(idx_a), "c*")
plt.plot(data_data[idx_b], np.zeros_like(idx_b), "m.")
plt.yticks([])
plt.title("Data")

plt.subplot(2, 1, 2)
idx_a = np.where(estimate < 0)[0]
idx_b = np.where(estimate > 0)[0]
idx = np.arange(0, estimate.shape[0])

plt.plot(data_data[idx_a], np.zeros_like(idx_a), "c*")
plt.plot(data_data[idx_b], np.zeros_like(idx_b), "m.")
plt.yticks([])
plt.title("Estimate")
plt.xlabel("Data Value")
plt.show()

Output:

Performance: 77.31% correct

Image3