9fa49b5d09
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
135 lines
4.2 KiB
Markdown
135 lines
4.2 KiB
Markdown
# [scipy.signal](https://docs.scipy.org/doc/scipy/reference/signal.html) -- Butterworth low, high and band-pass
|
||
{:.no_toc}
|
||
|
||
<nav markdown="1" class="toc-class">
|
||
* TOC
|
||
{:toc}
|
||
</nav>
|
||
|
||
## Goal
|
||
|
||
Sometimes we need to remove of frequency range from a time series. For this we can use a Butterworth filter [scipy.signal.butter](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html) and the [scipy.signal.filtfilt](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html) command.
|
||
|
||
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||
|
||
| | |
|
||
| ------------- |:-------------:|
|
||
| [scipy.signal.filtfilt](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html) | Apply a digital filter forward and backward to a signal. |
|
||
| [scipy.signal.butter](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html) | Butterworth digital and analog filter design. |
|
||
|
||
## Example data
|
||
|
||
```python
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
|
||
samples_per_second: int = 1000
|
||
dt: float = 1.0 / samples_per_second
|
||
|
||
# 10 secs
|
||
t: np.ndarray = np.arange(0, int(10 * samples_per_second)) * dt
|
||
|
||
f_low: float = 1 # Hz
|
||
f_mid: float = 10 # Hz
|
||
f_high: float = 100 # Hz
|
||
|
||
sin_low = np.sin(2 * np.pi * t * f_low)
|
||
sin_mid = np.sin(2 * np.pi * t * f_mid)
|
||
sin_high = np.sin(2 * np.pi * t * f_high)
|
||
|
||
plt.figure(1)
|
||
plt.plot(t, sin_low)
|
||
plt.plot(t, sin_mid + 3)
|
||
plt.plot(t, sin_high + 6)
|
||
plt.xlabel("Time [s]")
|
||
plt.ylabel("Waveform shifted")
|
||
plt.title("unfiltered data")
|
||
plt.show()
|
||
```
|
||
![figure 1](figure_1.png)
|
||
|
||
## Low pass
|
||
|
||
```python
|
||
from scipy import signal
|
||
|
||
lowpass_frequency: float = 2.0 # Hz
|
||
|
||
# Nint : The order of the filter.
|
||
# Wn : The critical frequency or frequencies. For lowpass and highpass filters, Wn is a scalar; for bandpass and bandstop filters, Wn is a length-2 sequence.
|
||
# For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2) that of the passband (the “-3 dB point”).
|
||
# For digital filters, if fs is not specified, Wn units are normalized from 0 to 1, where 1 is the Nyquist frequency (Wn is thus in half cycles / sample and defined as 2*critical frequencies / fs). If fs is specified, Wn is in the same units as fs.
|
||
# For analog filters, Wn is an angular frequency (e.g. rad/s).
|
||
# btype{‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional
|
||
# fs float, optional : The sampling frequency of the digital system.
|
||
b_low, a_low = signal.butter(
|
||
N=4, Wn=lowpass_frequency, btype="lowpass", fs=samples_per_second
|
||
)
|
||
sin_low_lp = signal.filtfilt(b_low, a_low, sin_low)
|
||
sin_mid_lp = signal.filtfilt(b_low, a_low, sin_mid)
|
||
sin_high_lp = signal.filtfilt(b_low, a_low, sin_high)
|
||
|
||
plt.figure(2)
|
||
plt.plot(t, sin_low_lp)
|
||
plt.plot(t, sin_mid_lp + 3)
|
||
plt.plot(t, sin_high_lp + 6)
|
||
plt.xlabel("Time [s]")
|
||
plt.ylabel("Waveform shifted")
|
||
plt.title(f"{lowpass_frequency} Hz low-pass filtered data")
|
||
plt.show()
|
||
```
|
||
![figure 2](figure_2.png)
|
||
|
||
## High pass
|
||
|
||
```python
|
||
from scipy import signal
|
||
|
||
highpass_frequency: float = 20.0 # Hz
|
||
|
||
b_high, a_high = signal.butter(
|
||
N=4, Wn=highpass_frequency, btype="highpass", fs=samples_per_second
|
||
)
|
||
sin_low_hp = signal.filtfilt(b_high, a_high, sin_low)
|
||
sin_mid_hp = signal.filtfilt(b_high, a_high, sin_mid)
|
||
sin_high_hp = signal.filtfilt(b_high, a_high, sin_high)
|
||
|
||
plt.figure(3)
|
||
plt.plot(t, sin_low_hp)
|
||
plt.plot(t, sin_mid_hp + 3)
|
||
plt.plot(t, sin_high_hp + 6)
|
||
plt.xlabel("Time [s]")
|
||
plt.ylabel("Waveform shifted")
|
||
plt.title(f"{highpass_frequency} Hz high-pass filtered data")
|
||
plt.show()
|
||
```
|
||
![figure 3](figure_3.png)
|
||
|
||
## Band pass
|
||
|
||
```python
|
||
from scipy import signal
|
||
|
||
lowpass_frequency: float = 2.0 # Hz
|
||
highpass_frequency: float = 20.0 # Hz
|
||
|
||
b_band, a_band = signal.butter(
|
||
N=4,
|
||
Wn=(lowpass_frequency, highpass_frequency),
|
||
btype="bandpass",
|
||
fs=samples_per_second,
|
||
)
|
||
sin_low_bp = signal.filtfilt(b_band, a_band, sin_low)
|
||
sin_mid_bp = signal.filtfilt(b_band, a_band, sin_mid)
|
||
sin_high_bp = signal.filtfilt(b_band, a_band, sin_high)
|
||
|
||
plt.figure(4)
|
||
plt.plot(t, sin_low_bp)
|
||
plt.plot(t, sin_mid_bp + 3)
|
||
plt.plot(t, sin_high_bp + 6)
|
||
plt.xlabel("Time [s]")
|
||
plt.ylabel("Waveform shifted")
|
||
plt.title(f"({lowpass_frequency} Hz, {highpass_frequency} Hz) band-pass filtered data")
|
||
plt.show()
|
||
```
|
||
![figure 4](figure_4.png)
|