pytutorial/PyBind11/basics/README.md
David Rotermund f788dbb676
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2024-01-03 15:12:34 +01:00

742 lines
20 KiB
Markdown

# Expanding Python with C++ modules
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## Top
A minimal introduction in how to use PyBind11. PyBind11 allows you to extend Python with C++ modules which are written in C++11 or newer.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## A very simple example
What do we need in the most minimal scenario?
* [Makefile](Makefile) plus a .env file
* Module wrapper ([PyMyModuleCPU.cpp](PyMyModuleCPU.cpp))
* The module ([MyModuleCPU.cpp](MyModuleCPU.cpp) and [MyModuleCPU.h](MyModuleCPU.h))
* Some test code [test.py](test.py)
## [Makefile](Makefile)
If you are programming in C++ and don't know how to use a Makefile then you really should [look it up](https://www.gnu.org/software/make/manual/html_node/Simple-Makefile.html).
I am working under Linux and my Makefile looks like [this](Makefile)... MyModuleCPU.cpp and PyMyModuleCPU.cpp are compiled in .o files and then linked into PyMyModuleCPU. However, Python needs a special filename ending which depends on the Python version. Thus there is this additional copy command dealing with this issue.
## The wrapper file ([PyMyModuleCPU.cpp](PyMyModuleCPU.cpp))
The wrapper file is the connection point between Python and C++. It tells Python what to call. In this example we have three functions we export into the Python space:
* PutStuffIn , which is connected to MyModule::PutStuffIn
* DoStuff , which is connected to MyModule::DoStuff
* GetStuffOut , which is connected to MyModule::GetStuffOut
These methods of the class MyModule are defined in MyModuleCPU.h and do what their names suggest they will do...
## The class definition of MyModule ([MyModuleCPU.h](MyModuleCPU.h))
The exported methods are public. The rest are a collection of methods to handle the data exchange between C++ and Python in a safe way.
The exported methods do the following:
* PutStuffIn : An Numpy array arrives. GetShape extracts the shape of the numpy.ndarray and stored it into std::vector<size_t> Data_Shape;. Then it puts the numpy.ndarray into Converter and makes std::vector<double> Data_Data; out of it.
* DoStuff: Python gives double Factor to the method. The method multiplies this number with the data Data_Data from the numpy.ndarray. This is done in SIMD (single instruction multiple data) fashion using openmp.
* GetStuffOut : It takes Data_Data and Data_Shape and makes a Python numpy.ndarray out of it and gives it to Python.
```cpp
int MyModule::PutStuffIn(py::array & Arg_Input){
if (GetShape(Arg_Input, Data_Shape) == false){
return false;
}
if (MyModule::Converter(Arg_Input, Data_Data) == false){
return false;
}
return true;
}
int MyModule::DoStuff(double Factor){
size_t Counter;
#pragma omp simd
for (Counter = 0; Counter < Data_Data.size(); Counter++){
Data_Data[Counter] *= Factor;
}
return true;
}
py::array MyModule::GetStuffOut(void){
return Converter(Data_Data, Data_Shape);
}
```
## The save (and slow) way to communicate ([MyModuleCPU.cpp](MyModuleCPU.cpp))
Please see this just a set of examples. I focused on double (float64) in this example.
### C++ in and Python out
* Put vector of vector<> in and get a py::list out : py::list MakeList(std::vector<std::vector<double>> &Arg_Data, std::vector<std::vector<size_t>> &Arg_Shape);
* Put vector<> in and get py::array out : py::array Converter(std::vector<double> &Arg_Data, std::vector<size_t> &Arg_Shape);
* Put a value in and get a py:array out : py::array Converter(double &Arg_Data);
### Python in and C++ out
* Put py::array in and get vector<> out : bool Converter(py::array &Arg_In, std::vector<double> &Arg_Data);
* Put py::list in and get vector<vector<>> out : bool ConvertList(py::list &Arg_List, std::vector<std::vector<double>> &Arg_Data, std::vector<std::vector<size_t>> &Arg_Shape);
* Put a py::array in and get a vector<> with the dimensions out : bool GetShape(py::array &Arg_Input, std::vector<size_t> &Arg_Shape);
* Put a py::list in and get a vector<vector<>> with the dimensions out : int GetShape(py::list &Arg_List, std::vector<std::vector<size_t>> &Arg_Shape);
### Helper functions
* Put a py::list in and get a vector<vector<>> of the data out : int CopyData(py::list &Arg_List, std::vector<std::vector<double>> Arg_Data, std::vector<std::vector<size_t>> &Arg_Shape);
* Check the properties of a list : bool CheckList(py::list &Arg_List, int Check_NumberOfDimensions, size_t dType);
## The test program ([test.py](test.py))
I think that the mathematical operation that the test code does, need no additional explanation. (A random matrix is multiplied by 5.0)
```python
X
[[0.43861361 0.34633103 0.30473636 0.25559892 0.61136669 0.61763177]
[0.58565176 0.04562993 0.89141907 0.17663681 0.94354389 0.08857159]
[0.40814404 0.58116521 0.76818518 0.11430939 0.90513926 0.38985626]
[0.07986693 0.41520487 0.11921055 0.12390022 0.64135749 0.04744072]
[0.44492385 0.94347543 0.01514797 0.74471067 0.34624101 0.91923338]]
X-Y:
[[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]]
X*5-Z:
[[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0.]]
```
## Source code
### .env file
**Change the directories and parameters according you system.**
```Makefile
PYBIN=~/P3.11/bin/
CC=/usr/lib64/ccache/clang++
NVCC=/usr/local/cuda-12/bin/nvcc -allow-unsupported-compiler
PARAMETERS_O_CPU = -O3 -std=c++14 -fPIC -Wall -fopenmp=libomp
PARAMETERS_Linker_CPU = -shared -lm -lomp -lstdc++ -Wall
PARAMETERS_O_GPU= -O3 -std=c++14 -ccbin=$(CC) \
-Xcompiler "-fPIC -Wall -fopenmp=libomp"
PARAMETERS_Linker_GPU=-Xcompiler "-shared -lm -lomp -lstdc++ -Wall"
O_DIRS = o/
```
### Makefile
[Makefile](Makefile)
```Makefile
include .env
export
name = MyModule
type = CPU
PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
PARAMETERS_O = $(PARAMETERS_O_CPU) $(PYBIND11INCLUDE)
PARAMETERS_Linker = $(PARAMETERS_Linker_CPU)
so_file = Py$(name)$(type)$(PYPOSTFIX)
pyi_file = Py$(name)$(type).pyi
all: $(so_file)
$(O_DIRS)$(name)$(type).o: $(name)$(type).h $(name)$(type).cpp
mkdir -p $(O_DIRS)
$(CC) $(PARAMETERS_O) -c $(name)$(type).cpp -o $(O_DIRS)$(name)$(type).o
$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp
mkdir -p $(O_DIRS)
$(CC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o
$(so_file): $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
$(CC) $(PARAMETERS_Linker) -o $(so_file) $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
#######################
clean:
rm -rf $(O_DIRS)
rm -f $(so_file)
rm -f $(pyi_file)
```
### PyMyModuleCPU.cpp
[PyMyModuleCPU.cpp](PyMyModuleCPU.cpp)
```cpp
#include <pybind11/pybind11.h>
#include "MyModuleCPU.h"
namespace py = pybind11;
PYBIND11_MODULE(PyMyModuleCPU, m)
{
m.doc() = "Example Module";
py::class_<MyModule>(m, "MyModule")
.def(py::init<>())
.def("PutStuffIn", &MyModule::PutStuffIn)
.def("DoStuff", &MyModule::DoStuff)
.def("GetStuffOut", &MyModule::GetStuffOut);
}
```
### MyModuleCPU.h
[MyModuleCPU.h](MyModuleCPU.h)
```cpp
#ifndef MYMODULECPU
#define MYMODULECPU
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <vector>
namespace py = pybind11;
class MyModule
{
public:
MyModule();
~MyModule();
// The functionality of the module
int PutStuffIn(py::array& Arg_Input);
int DoStuff(double Factor);
py::array GetStuffOut(void);
private:
// Example data:
std::vector<double> Data_Data;
std::vector<size_t> Data_Shape;
// Private functions:
// ==================
// Put vector of vector<> in and get a py::list out
py::list MakeList(std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape);
// Put vector<> in and get py::array out
py::array Converter(std::vector<double>& Arg_Data,
std::vector<size_t>& Arg_Shape);
// Put a value in and get a py:array out
py::array Converter(double& Arg_Data);
// Put py::array in and get vector<> out
bool Converter(py::array& Arg_In, std::vector<double>& Arg_Data);
// Put py::list in and get vector<vector<>> out
bool ConvertList(py::list& Arg_List,
std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape);
// Put a py::array in and get a vector<> with the dimensions out
bool GetShape(py::array& Arg_Input, std::vector<size_t>& Arg_Shape);
// Put a py::list in and get a vector<vector<>> with the dimensions out
int GetShape(py::list& Arg_List, std::vector<std::vector<size_t>>& Arg_Shape);
// Put a py::list in and get a vector<vector<>> of the data out out
int CopyData(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape);
// Check the properties of a list
// 0: single
// 1: double
// 2: uint32_t
// 3: uint64_t
bool CheckList(py::list& Arg_List, int Check_NumberOfDimensions,
size_t dType);
};
#endif /* MYMODULECPU */
```
### MyModuleCPU.cpp
[MyModuleCPU.cpp](MyModuleCPU.cpp)
```cpp
#include "MyModuleCPU.h"
#include <iostream>
#include <unistd.h>
#include <cctype>
MyModule::MyModule() {};
MyModule::~MyModule() {};
int MyModule::PutStuffIn(py::array& Arg_Input)
{
if (GetShape(Arg_Input, Data_Shape) == false)
{
return false;
}
if (MyModule::Converter(Arg_Input, Data_Data) == false)
{
return false;
}
return true;
}
int MyModule::DoStuff(double Factor)
{
size_t Counter;
#pragma omp simd
for (Counter = 0; Counter < Data_Data.size(); Counter++)
{
Data_Data[Counter] *= Factor;
}
return true;
}
py::array MyModule::GetStuffOut(void)
{
return Converter(Data_Data, Data_Shape);
}
// ------------------------------------------------
py::list MyModule::MakeList(std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape)
{
py::list ReturnValue;
if (Arg_Data.size() != Arg_Shape.size())
{
std::cout << "MyModule::MakeList => The sizes of the two vectors are different.\n";
return ReturnValue;
}
size_t List_Pos = 0;
for (List_Pos = 0; List_Pos < Arg_Shape.size(); List_Pos++)
{
std::vector<ptrdiff_t> ShapeVector;
ShapeVector.resize(Arg_Shape[List_Pos].size());
size_t Counter = 0;
for (Counter = 0; Counter < Arg_Shape[List_Pos].size(); Counter++)
{
ShapeVector[Counter] = Arg_Shape[List_Pos].at(Counter);
}
auto Temp = py::array_t<double>(ShapeVector, Arg_Data[List_Pos].data());
ReturnValue.append(Temp);
}
return ReturnValue;
}
py::array MyModule::Converter(std::vector<double>& Arg_Data,
std::vector<size_t>& Arg_Shape)
{
py::array ReturnValue;
std::vector<ptrdiff_t> ShapeVector;
ShapeVector.resize(Arg_Shape.size());
size_t Counter = 0;
for (Counter = 0; Counter < Arg_Shape.size(); Counter++)
{
ShapeVector[Counter] = Arg_Shape.at(Counter);
}
auto Temp = py::array_t<double>(ShapeVector, Arg_Data.data());
return Temp;
}
bool MyModule::Converter(py::array& Arg_In, std::vector<double>& Arg_Data)
{
if ((Arg_In.flags() & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_)
{
std::cout << "MyModule::Converter => Array is not c_style.\n";
return false;
}
size_t Size = Arg_In.nbytes();
if (Size == 0)
{
std::cout << "MyModule::Converter => Array is empty.\n";
return false;
}
auto Temp_Array = Arg_In.request();
if (py::isinstance<py::array_t<double>>(Arg_In) == false)
{
std::cout << "MyModule::Converter => Wrong type.\n";
return false;
}
double* MyPtr = (double*)Temp_Array.ptr;
if (MyPtr == nullptr)
{
std::cout << "MyModule::Converter => Pointer is null.\n";
return false;
}
Arg_Data.resize(Size / sizeof(double));
memcpy(Arg_Data.data(), MyPtr, Size);
return true;
}
bool MyModule::ConvertList(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape)
{
Arg_Data.resize(0);
Arg_Shape.resize(0);
// Get the shapes of all the matrices
if (GetShape(Arg_List, Arg_Shape) != 0)
{
return false;
}
// Get the data from the list
if (CopyData(Arg_List, Arg_Data, Arg_Shape) != 0)
{
return false;
}
return true;
}
int MyModule::GetShape(py::list& Arg_List, std::vector<std::vector<size_t>>& Arg_Shape)
{
Arg_Shape.resize(0);
size_t List_Length = Arg_List.size();
Arg_Shape.resize(List_Length);
size_t Counter_List;
size_t Counter_Dims;
py::array Temp_Array;
for (Counter_List = 0; Counter_List < List_Length; Counter_List++)
{
Arg_Shape[Counter_List].resize(0);
Temp_Array = Arg_List[Counter_List];
Arg_Shape[Counter_List].resize(Temp_Array.ndim());
for (Counter_Dims = 0; Counter_Dims < Temp_Array.ndim(); Counter_Dims++)
{
Arg_Shape[Counter_List][Counter_Dims] = Temp_Array.shape(Counter_Dims);
}
}
return 0;
}
bool MyModule::GetShape(py::array& Arg_Input, std::vector<size_t>& Arg_Shape)
{
Arg_Shape.resize(Arg_Input.ndim());
size_t Counter_Dims;
for (Counter_Dims = 0; Counter_Dims < Arg_Input.ndim(); Counter_Dims++)
{
Arg_Shape[Counter_Dims] = Arg_Input.shape(Counter_Dims);
}
return true;
}
int MyModule::CopyData(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape)
{
Arg_Data.resize(0);
size_t List_Length = Arg_List.size();
size_t List_Pos = List_Length;
double* MyPtr = nullptr;
py::array Temp_Array;
Arg_Data.resize(List_Length);
for (List_Pos = 0; List_Pos < List_Length; List_Pos++)
{
MyPtr = nullptr;
Temp_Array = Arg_List[List_Pos];
size_t Counter = 0;
size_t ElementsOfArray = 0;
for (Counter = 0; Counter < Arg_Shape[List_Pos].size(); Counter++)
{
if (Counter == 0)
{
ElementsOfArray = Arg_Shape[List_Pos][Counter];
}
else
{
ElementsOfArray *= Arg_Shape[List_Pos][Counter];
}
}
size_t SizeOfArray_Bytes = ElementsOfArray * sizeof(double);
if (SizeOfArray_Bytes != Temp_Array.nbytes())
{
std::cout << "MyModule::CopyData => "
<< "Liste element: "
<< Counter << " is not the right amount of data.\n";
return -1;
}
auto Temp_Array_f = Temp_Array.request();
MyPtr = (double*)Temp_Array_f.ptr;
if (MyPtr == nullptr)
{
std::cout << "MyModule::CopyData => "
<< "Pointer is null.\n";
return -1;
}
Arg_Data[List_Pos].resize(ElementsOfArray);
memcpy((void*)Arg_Data[List_Pos].data(), (void*)MyPtr, SizeOfArray_Bytes);
}
return 0;
}
py::array MyModule::Converter(double& Arg_Data)
{
std::vector<ptrdiff_t> ShapeVector;
ShapeVector.resize(1);
ShapeVector[0] = 1;
return py::array_t<double>(ShapeVector, &Arg_Data);
}
bool MyModule::CheckList(py::list& Arg_List, int Check_NumberOfDimensions,
size_t dType)
{
// Is it a list?
py::handle type = Arg_List.get_type();
py::object type_name = type.attr("__name__");
std::string Correct_List = std::string("list");
if (Correct_List.compare(py::cast<std::string>(type_name)) != 0)
{
std::cout << "MyModule => Not a list.\n";
return false;
}
// Is there something in the list?
size_t List_Length = Arg_List.size();
if (List_Length <= 0)
{
std::cout << "MyModule => List is empty.\n";
return false;
}
// Are the list elements numpy arrays?
size_t Counter = 0;
std::string Correct_NDArray = std::string("ndarray");
for (Counter = 0; Counter < List_Length; Counter++)
{
type = Arg_List[Counter].get_type();
type_name = type.attr("__name__");
if (Correct_NDArray.compare(py::cast<std::string>(type_name)) != 0)
{
std::cout << "MyModule => Liste element: " << Counter << " not a numpy array .\n";
return false;
}
}
// Has every array the right dimension?
py::array Temp_Array;
for (Counter = 0; Counter < List_Length; Counter++)
{
Temp_Array = Arg_List[Counter];
if (Temp_Array.ndim() != Check_NumberOfDimensions)
{
std::cout << " MyModule => Liste element: " << Counter
<< " has not the necessary "
<< Check_NumberOfDimensions << " dimensions (found: " << Temp_Array.ndim() << ").\n";
return false;
}
}
// Are all the numpy arrays c_style?
for (Counter = 0; Counter < List_Length; Counter++)
{
Temp_Array = Arg_List[Counter];
if ((Temp_Array.flags() & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_)
{
std::cout << "MyModule => Liste element: " << Counter << " is not c_style.\n";
return false;
}
}
// 0: single
// 1: double
// 2: uint32_t
// 3: uint64_t
for (Counter = 0; Counter < List_Length; Counter++)
{
Temp_Array = Arg_List[Counter];
// Float
if (dType == 0)
{
if (py::isinstance<py::array_t<float>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a float.\n";
return -1;
}
}
// Double
if (dType == 1)
{
if (py::isinstance<py::array_t<double>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a double.\n";
return false;
}
}
// uint32_t
if (dType == 2)
{
if (py::isinstance<py::array_t<uint32_t>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a uint32.\n";
return false;
}
}
// uint64_t
if (dType == 3)
{
if (py::isinstance<py::array_t<uint64_t>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a uint64.\n";
return false;
}
}
}
return true;
}
```
### test.py
[test.py](test.py)
```python
from PyMyModuleCPU import MyModule
import numpy as np
MyCExtension = MyModule()
X = np.random.random((5, 6))
print("X")
print(X)
if MyCExtension.PutStuffIn(X) is False:
print("Error (1)\n")
exit()
Y = MyCExtension.GetStuffOut()
print("X-Y:")
print(X - Y)
if MyCExtension.DoStuff(5.0) is False:
print("Error (2)\n")
exit()
Z = MyCExtension.GetStuffOut()
print("X*5-Z:")
print(X * 5.0 - Z)
```
## [OpenMP](https://bisqwit.iki.fi/story/howto/openmp/)
### [SIMD (Single Instruction Multiple Data)](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data)
Make absolutely sure that you don't overlap read and write memory areas. Also make absolutely sure that you don't write at same positions. (I mean stuff like s[i] = v[i+j]; )
```cpp
#pragma omp simd
for(...){}
```
```cpp
#pragma omp simd reduction(+ : SOME_VARIABLE_NAME)
for(...){
SOME_VARIABLE_NAME += ...
}
```
Parallel loop (on multiple cores)
```cpp
omp_set_num_threads(number_of_cpu_processes);
```
```cpp
#pragma omp parallel for
for(...){}
```
For the parallel loop you need to add the parameters -fopenmp=libomp -lomp into the Makefile.
## Reference
* [PyBind11](https://pybind11.readthedocs.io/en/stable/)