pytutorial/pywavelet/README.md
David Rotermund 940bb2d637
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-01 17:27:54 +01:00

185 lines
6 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [PyWavelets](https://pywavelets.readthedocs.io/en/latest/) -- Wavelet Transforms in Python
## The goal
How do we do wavelet transforms under Python?
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
You might want to read: [A Practical Guide to Wavelet Analysis](https://paos.colorado.edu/research/wavelets/) -> [PDF](https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf)
```shell
pip install PyWavelets
```
## Which [continuous mother wavelets](https://pywavelets.readthedocs.io/en/latest/ref/cwt.html#continuous-wavelet-families) are available?
```python
import pywt
wavelet_list = pywt.wavelist(kind="continuous")
print(wavelet_list)
```
```Python console
['cgau1', 'cgau2', 'cgau3', 'cgau4', 'cgau5', 'cgau6', 'cgau7', 'cgau8', 'cmor', 'fbsp', 'gaus1', 'gaus2', 'gaus3', 'gaus4', 'gaus5', 'gaus6', 'gaus7', 'gaus8', 'mexh', 'morl', 'shan']
```
* The mexican hat wavelet "mexh"
* The Morlet wavelet "morl"
* The complex Morlet wavelet ("cmorB-C" with floating point values B, C)
* The Gaussian wavelets ("gausP" where P is an integer between 1 and and 8)
* The complex Gaussian wavelets ("cgauP" where P is an integer between 1 and 8)
* The Shannon wavelets ("shanB-C" with floating point values B and C)
* The frequency B-spline wavelets ("fpspM-B-C" with integer M and floating point B, C)
see [Choosing the scales for cwt](https://pywavelets.readthedocs.io/en/latest/ref/cwt.html#choosing-the-scales-for-cwt)
## Visualizing wavelets
```python
import numpy as np
import matplotlib.pyplot as plt
import pywt
wavelet_name: str = "cmor1.5-1.0"
# Invoking the complex morlet wavelet object
wav = pywt.ContinuousWavelet(wavelet_name)
# Integrate psi wavelet function from -Inf to x
# using the rectangle integration method.
int_psi, x = pywt.integrate_wavelet(wav, precision=10)
int_psi /= np.abs(int_psi).max()
wav_filter: np.ndarray = int_psi[::-1]
nt: int = len(wav_filter)
t: np.ndarray = np.linspace(-nt // 2, nt // 2, nt)
plt.plot(t, wav_filter.real, label="real")
plt.plot(t, wav_filter.imag, label="imaginary")
plt.ylim([-1, 1])
plt.legend(loc="upper left")
plt.xlabel("time (samples)")
plt.title(f"filter {wavelet_name}")
```
![figure 1](image1.png)
## Building a frequency scale for the complex Morlet wavelet
We don't want to waste computations power. Thus we want to put the frequency band for higher frequencies further away than for smaller frequencies. Thus we will use a $2^{N \cdot Scale}$ scale.
```python
import numpy as np
import matplotlib.pyplot as plt
import pywt
number_of_frequences: int = 20 # Number of frequency bands
frequency_range: tuple[float, float] = (2, 200) # Hz
dt: float = 1 / 1000 # sec
frequency_range_np: np.ndarray = np.array(frequency_range)
s_spacing = (1.0 / (number_of_frequences - 1)) * np.log2(
frequency_range_np.max() / frequency_range_np.min()
)
scale = np.power(2, np.arange(0, number_of_frequences) * s_spacing)
frequency_axis_np = frequency_range_np.min() * np.flip(scale)
plt.plot(frequency_axis_np, "--*", label="Frequency we want")
wave_scales = 1.0 / (frequency_axis_np * dt)
frequency_axis = pywt.scale2frequency("cmor1.5-1.0", wave_scales) / dt
plt.plot(frequency_axis, ".", label="Frequency we got")
plt.legend()
plt.xlim([0, number_of_frequences - 1])
plt.xticks(np.arange(0, number_of_frequences))
plt.ylabel("Frequency [Hz]")
plt.xlabel("Frequency band")
plt.show()
```
![figure 2](image2.png)
## Cone of influence for the complex Morlet wavelet
At the edges of the time series, the wavelet is dangling out of the allowed time axis. Thus these values are nonsense and need to be removed. The size of the wavelet is connected to its scale, hence for different scales the bad zone has different sizes. For the complex Morlet wavelet the number of samples are defined by the equation $\sqrt(2) \cdot scale$ ( [A Practical Guide to Wavelet Analysis](https://paos.colorado.edu/research/wavelets/) -> [PDF](https://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf) ). Which looks like this: 
```python
cone_of_influence = np.ceil(np.sqrt(2) * wave_scales).astype(dtype=np.int64)
print(cone_of_influence)
plt.plot(frequency_axis, cone_of_influence, "*")
plt.ylabel("Number of invalid data samples")
plt.xlabel("Frequency [Hz]")
plt.show()
```
```Python console
[ 8 10 12 15 19 24 31 39 50 63 80 102 130 166 211 269 342 436 555 708]
```
![figure 3](image3.png)
## Analyzing a test signal 
First we need a test signal. We will use a 50Hz sinus for that
```python
import numpy as np
import matplotlib.pyplot as plt
f_test: float = 50 # Hz
number_of_test_samples: int = 1000
dt: float = 1.0 / 1000 # sec
t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt
test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test)
plt.plot(t_test, test_data)
plt.xlabel("time [sec]")
plt.ylabel("time series")
```
![figure 4](image4.png)
```python
import numpy as np
import matplotlib.pyplot as plt
import pywt
f_test: float = 50 # Hz
number_of_test_samples: int = 1000
# The wavelet we want to use
mother = pywt.ContinuousWavelet("cmor1.5-1.0")
# Parameters for the wavelet transform
number_of_frequences: int = 25 # frequency bands
frequency_range_min: float = 15 # Hz
frequency_range_max: float = 200 # Hz
dt: float = 1.0 / 1000 # sec
t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt
test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test)
# Calculate the wavelet scales we requested
s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2(
frequency_range_max / frequency_range_min
)
scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing)
frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale)
wave_scales: np.ndarray = 1.0 / (frequency_axis_request * dt)
complex_spectrum, frequency_axis = pywt.cwt(test_data, wave_scales, mother, dt)
plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto")
plt.colorbar()
plt.yticks(np.arange(0, frequency_axis.shape[0]), frequency_axis)
plt.xticks(np.arange(0, t_test.shape[0]), t_test)
plt.xlabel("Time [sec]")
plt.ylabel("Frequency [Hz]")
plt.show()
```
![figure 5](image5.png)