pytutorial/scikit-learn/fast_ica/README.md
David Rotermund 58bf5f9c2d
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-19 15:51:27 +01:00

212 lines
7.5 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# FastICA
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## Test data
We rotate the blue dots with a non-orthogonal rotation matrix into the red dots.
```python
import numpy as np
import matplotlib.pyplot as plt
rng = np.random.default_rng(1)
a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
angle_x = -0.3
angle_y = 0.3
roation_matrix = np.array(
[[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix
plt.plot(data[:, 0], data[:, 1], "b.")
plt.plot(data_r[:, 0], data_r[:, 1], "r.")
plt.show()
```
![image0](image0.png)
## Train and use [FastICA](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA)
```python
class sklearn.decomposition.FastICA(n_components=None, *, algorithm='parallel', whiten='unit-variance', fun='logcosh', fun_args=None, max_iter=200, tol=0.0001, w_init=None, whiten_solver='svd', random_state=None)
```
> FastICA: a fast algorithm for Independent Component Analysis.
>
> The implementation is based on [1](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#r44c805292efc-1).
```python
fit(X, y=None)
```
> Fit the model to X.
>
> **X** : array-like of shape (n_samples, n_features)
>
> Training data, where n_samples is the number of samples and n_features is the number of features.
```python
transform(X, copy=True)
```
> Recover the sources from X (apply the unmixing matrix).
>
> **X** : array-like of shape (n_samples, n_features)
>
> Data to transform, where n_samples is the number of samples and n_features is the number of features.
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA
rng = np.random.default_rng(1)
a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
angle_x = -0.3
angle_y = 0.3
roation_matrix = np.array(
[[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix
# Train
ica = FastICA(n_components=2)
ica.fit(data_r)
# Use
transformed_data = ica.transform(data_r)
plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.")
plt.show()
```
![image1](image1.png)
## Use FastICA to transform the un-rotated data
```python
inverse_transform(X, copy=True)
```
> Transform the sources back to the mixed data (apply mixing matrix).
> **X** : array-like of shape (n_samples, n_components)
>
> Sources, where n_samples is the number of samples and n_components is the number of components.
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import FastICA
rng = np.random.default_rng(1)
a_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis] ** 3
b_y = rng.normal(0.0, 1.0, size=(5000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
angle_x = -0.3
angle_y = 0.3
roation_matrix = np.array(
[[np.cos(angle_x), -np.sin(angle_x)], [np.sin(angle_y), np.cos(angle_y)]]
)
data_r = data @ roation_matrix
# Train
ica = FastICA(n_components=2)
ica.fit(data_r)
# Use
transformed_data = ica.inverse_transform(data)
plt.plot(transformed_data[:, 0], transformed_data[:, 1], "k.")
plt.show()
```
![image2](image2.png)
## Fast ICA Methods
|||
|---|---|
|[fit](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.fit)(X[, y])|Fit the model to X.|
|[fit_transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.fit_transform)(X[, y])|Fit the model and recover the sources from X.|
|[get_feature_names_out](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.get_feature_names_out)([input_features])|Get output feature names for transformation.|
|[get_metadata_routing](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.get_metadata_routing)()|Get metadata routing of this object.|
|[get_params](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.get_params)([deep])|Get parameters for this estimator.|
|[inverse_transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.inverse_transform)(X[, copy])|Transform the sources back to the mixed data (apply mixing matrix).|
|[set_inverse_transform_request](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_inverse_transform_request)(*[, copy])|Request metadata passed to the inverse_transform method.|
|[set_output](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_output)(*[, transform])|Set output container.|
|[set_params](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_params)(**params)|Set the parameters of this estimator.|
|[set_transform_request](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.set_transform_request)(*[, copy])|Request metadata passed to the transform method.|
|[transform](https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.transform)(X[, copy])|Recover the sources from X (apply the unmixing matrix).|
## Fast ICA Attributes
> **components_** : ndarray of shape (n_components, n_features)
>
> The linear operator to apply to the data to get the independent sources. This is equal to the unmixing matrix when whiten is False, and equal to np.dot(unmixing_matrix, self.whitening_) when whiten is True.
> **mixing_** : ndarray of shape (n_features, n_components)
>
> The pseudo-inverse of components_. It is the linear operator that maps independent sources to the data.
> **mean_** : ndarray of shape(n_features,)
>
> The mean over features. Only set if self.whiten is True.
> **n_features_in_** : int
>
> Number of features seen during fit.
> **feature_names_in_** : ndarray of shape (n_features_in_,)
>
> Names of features seen during fit. Defined only when X has feature names that are all strings.
> **n_iter_** : int
>
> If the algorithm is “deflation”, n_iter is the maximum number of iterations run across all components. Else they are just the number of iterations taken to converge.
> **whitening_** : ndarray of shape (n_components, n_features)
>
> Only set if whiten is True. This is the pre-whitening matrix that projects data onto the first n_components principal components.