pytutorial/numpy/ndarray/README.md
David Rotermund 6766184df8
Create README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-15 00:19:20 +01:00

288 lines
9.6 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [The N-dimensional array (ndarray)](https://numpy.org/doc/stable/reference/arrays.ndarray.html)
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Class has a very important job as a core container type in Python. It is really hard to find a good overview how to use them in a good practice manner.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## Chaining of (ndarray) methods
```python
import numpy as np
a = np.ones((3, 3))
b = a.mean(axis=1).max()
print(b) # -> 1.0
```
## [numpy.ndarray.fill](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html)
## [Array methods](https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-methods)
### [Array conversion](https://numpy.org/doc/stable/reference/arrays.ndarray.html#array-conversion)
|||
|---|---|
|[ndarray.item(*args)](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.item.html#numpy.ndarray.item)|Copy an element of an array to a standard Python scalar and return it.|
|[ndarray.tolist()](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tolist.html#numpy.ndarray.tolist)|Return the array as an a.ndim-levels deep nested list of Python scalars.|
|[ndarray.itemset(*args)](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemset.html#numpy.ndarray.itemset)|Insert scalar into an array (scalar is cast to array's dtype, if possible)|
|[ndarray.tostring([order])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tostring.html#numpy.ndarray.tostring)|A compatibility alias for tobytes, with exactly the same behavior.|
|[ndarray.tobytes([order])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tobytes.html#numpy.ndarray.tobytes)|Construct Python bytes containing the raw data bytes in the array.|
|[ndarray.tofile(fid[, sep, format])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile)|Write array to a file as text or binary (default).|
|[ndarray.dump(file)](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dump.html#numpy.ndarray.dump)|Dump a pickle of the array to the specified file.|
|[ndarray.dumps()](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dumps.html#numpy.ndarray.dumps)|Returns the pickle of the array as a string.|
|[ndarray.astype(dtype[, order, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype)|Copy of the array, cast to a specified type.|
|[ndarray.byteswap([inplace])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.byteswap.html#numpy.ndarray.byteswap)|Swap the bytes of the array elements|
|[ndarray.copy([order])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy)|Return a copy of the array.|
|[ndarray.view([dtype][, type])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view)|New view of array with the same data.|
|[ndarray.getfield(dtype[, offset])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.getfield.html#numpy.ndarray.getfield)|Returns a field of the given array as a certain type.|
|[ndarray.setflags([write, align, uic])](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.setflags.html#numpy.ndarray.setflags)|Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.|
|[ndarray.fill(value)](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.fill.html#numpy.ndarray.fill)|Fill the array with a scalar value.|
### Shape manipulation
|||
|---|---|
|[ndarray.reshape(shape[, order])]()|
Returns an array containing the same data with a new shape.
|[ndarray.resize(new_shape[, refcheck])]()|
Change shape and size of array in-place.
|[ndarray.transpose(*axes)]()|
Returns a view of the array with axes transposed.
|[ndarray.swapaxes(axis1, axis2)]()|
Return a view of the array with axis1 and axis2 interchanged.
|[ndarray.flatten([order])]()|
Return a copy of the array collapsed into one dimension.
|[ndarray.ravel([order])]()|
Return a flattened array.
|[ndarray.squeeze([axis])]()|
Remove axes of length one from a.
### Item selection and manipulation
|[ndarray.take(indices[, axis, out, mode])]()|
Return an array formed from the elements of a at the given indices.
|[ndarray.put(indices, values[, mode])]()|
Set a.flat[n] = values[n] for all n in indices.
|[ndarray.repeat(repeats[, axis])]()|
Repeat elements of an array.
|[ndarray.choose(choices[, out, mode])]()|
Use an index array to construct a new array from a set of choices.
|[ndarray.sort([axis, kind, order])]()|
Sort an array in-place.
|[ndarray.argsort([axis, kind, order])]()|
Returns the indices that would sort this array.
|[ndarray.partition(kth[, axis, kind, order])]()|
Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array.
|[ndarray.argpartition(kth[, axis, kind, order])]()|
Returns the indices that would partition this array.
|[ndarray.searchsorted(v[, side, sorter])]()|
Find indices where elements of v should be inserted in a to maintain order.
|[ndarray.nonzero()]()|
Return the indices of the elements that are non-zero.
|[ndarray.compress(condition[, axis, out])]()|
Return selected slices of this array along given axis.
|[ndarray.diagonal([offset, axis1, axis2])]()|
Return specified diagonals.
### [Calculation](https://numpy.org/doc/stable/reference/arrays.ndarray.html#calculation)
|[ndarray.max([axis, out, keepdims, initial, ...])]()|
Return the maximum along a given axis.
|[ndarray.argmax([axis, out, keepdims])]()|
Return indices of the maximum values along the given axis.
|[ndarray.min([axis, out, keepdims, initial, ...])]()|
Return the minimum along a given axis.
|[ndarray.argmin([axis, out, keepdims])]()|
Return indices of the minimum values along the given axis.
|[ndarray.ptp([axis, out, keepdims])]()|
Peak to peak (maximum - minimum) value along a given axis.
|[ndarray.clip([min, max, out])]()|
Return an array whose values are limited to [min, max].
|[ndarray.conj()]()|
Complex-conjugate all elements.
|[ndarray.round([decimals, out])]()|
Return a with each element rounded to the given number of decimals.
|[ndarray.trace([offset, axis1, axis2, dtype, out])]()|
Return the sum along diagonals of the array.
|[ndarray.sum([axis, dtype, out, keepdims, ...])]()|
Return the sum of the array elements over the given axis.
|[ndarray.cumsum([axis, dtype, out])]()|
Return the cumulative sum of the elements along the given axis.
|[ndarray.mean([axis, dtype, out, keepdims, where])]()|
Returns the average of the array elements along given axis.
|[ndarray.var([axis, dtype, out, ddof, ...])]()|
Returns the variance of the array elements, along given axis.
|[ndarray.std([axis, dtype, out, ddof, ...])]()|
Returns the standard deviation of the array elements along given axis.
|[ndarray.prod([axis, dtype, out, keepdims, ...])]()|
Return the product of the array elements over the given axis
|[ndarray.cumprod([axis, dtype, out])]()|
Return the cumulative product of the elements along the given axis.
|[ndarray.all([axis, out, keepdims, where])]()|
Returns True if all elements evaluate to True.
|[ndarray.any([axis, out, keepdims, where])]()|
Returns True if any of the elements of a evaluate to True.
## [Arithmetic, matrix multiplication, and comparison operations](https://numpy.org/doc/stable/reference/arrays.ndarray.html#arithmetic-matrix-multiplication-and-comparison-operations)
|[ndarray.\_\_lt\_\_(value, /)]()|
Return self<value.
|[ndarray.\_\_le\_\_(value, /)]()|
Return self<=value.
|[ndarray.\_\_gt\_\_(value, /)]()|
Return self>value.
|[ndarray.\_\_ge\_\_(value, /)]()|
Return self>=value.
|[ndarray.\_\_eq\_\_(value, /)]()|
Return self==value.
|[ndarray.\_\_ne\_\_(value, /)]()|
Return self!=value.
|[ndarray.\_\_bool\_\_(/)]()|
True if self else False
|[ndarray.\_\_neg\_\_(/)]()|
-self
|[ndarray.\_\_pos\_\_(/)]()|
+self
|[ndarray.\_\_abs\_\_(self)]()|
|[ndarray.\_\_invert\_\_(/)]()|
~self
|[ndarray.\_\_add\_\_(value, /)]()|
Return self+value.
|[ndarray.\_\_sub\_\_(value, /)]()|
Return self-value.
|[ndarray.\_\_mul\_\_(value, /)]()|
Return self*value.
|[ndarray.\_\_truediv\_\_(value, /)]()|
Return self/value.
|[ndarray.\_\_floordiv\_\_(value, /)]()|
Return self//value.
|[ndarray.\_\_mod\_\_(value, /)]()|
Return self%value.
|[ndarray.\_\_divmod\_\_(value, /)]()|
Return divmod(self, value).
|[ndarray.\_\_pow\_\_(value[, mod])]()|
Return pow(self, value, mod).
|[ndarray.\_\_lshift\_\_(value, /)]()|
Return self<<value.
|[ndarray.\_\_rshift\_\_(value, /)]()|
Return self>>value.
|[ndarray.\_\_and\_\_(value, /)]()|
Return self&value.
|[ndarray.\_\_or\_\_(value, /)]()|
Return self|value.
|[ndarray.\_\_xor\_\_(value, /)]()|
Return self^value.
|[ndarray.\_\_iadd\_\_(value, /)]()|
Return self+=value.
|[ndarray.\_\_isub\_\_(value, /)]()|
Return self-=value.
|[ndarray.\_\_imul\_\_(value, /)]()|
Return self*=value.
|[ndarray.\_\_itruediv\_\_(value, /)]()|
Return self/=value.
|[ndarray.\_\_ifloordiv\_\_(value, /)]()|
Return self//=value.
|[ndarray.\_\_imod\_\_(value, /)]()|
Return self%=value.
|[ndarray.\_\_ipow\_\_(value, /)]()|
Return self**=value.
|[ndarray.\_\_ilshift\_\_(value, /)]()|
Return self<<=value.
|[ndarray.\_\_irshift\_\_(value, /)]()|
Return self>>=value.
|[ndarray.\_\_iand\_\_(value, /)]()|
Return self&=value.
|[ndarray.\_\_ior\_\_(value, /)]()|
Return self|=value.
|[ndarray.\_\_ixor\_\_(value, /)]()|
Return self^=value.
|[ndarray.\_\_matmul\_\_(value, /)]()|
Return self@value.
### [Special methods](https://numpy.org/doc/stable/reference/arrays.ndarray.html#special-methods)
[special methods](https://numpy.org/doc/stable/reference/arrays.ndarray.html#special-methods)