Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
22 KiB
Pandas
{:.no_toc}
* TOC {:toc}The goal
Questions to David Rotermund
pip install pandas
Pandas
The two most important data types of Pandas are:
- Series
- Data Frames
“Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.”
It is the basis for:
This module contains a large number of probability distributions, summary and frequency statistics, correlation functions and statistical tests, masked statistics, kernel density estimation, quasi-Monte Carlo functionality, and more.
Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy.
rpy2 is an interface to R running embedded in a Python process.
Pandas.Series
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=None, fastpath=False)
One-dimensional ndarray with axis labels (including time series).
Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).
Operations between Series (+, -, /, *, **) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.
Example 1:
import pandas as pd
example = pd.Series(["Bambu", "Tree", "Sleep"])
print(example)
Output:
0 Bambu
1 Tree
2 Sleep
dtype: object
Example 2:
import numpy as np
import pandas as pd
example = pd.Series([99, 88, 32])
print(example)
Output:
0 99
1 88
2 32
dtype: int64
Example 3:
import numpy as np
import pandas as pd
rng = np.random.default_rng()
a = rng.random((5))
example = pd.Series(a)
print(example)
Output:
0 0.305920
1 0.633360
2 0.219094
3 0.005722
4 0.006673
dtype: float64
Example 4:
import pandas as pd
example = pd.Series(["Bambu", 3, "Sleep"])
print(example)
Output:
0 Bambu
1 3
2 Sleep
dtype: object
index and values
import pandas as pd
example = pd.Series(["Bambu", "Tree", "Sleep"])
print(example.index)
print()
print(example.values)
Output:
RangeIndex(start=0, stop=3, step=1)
['Bambu' 'Tree' 'Sleep']
More complex indexing and re-indexing is possible:
import pandas as pd
index_1 = pd.Series(["Food", "HappyPlace", "Favorite"])
data_1 = pd.Series(["Bambu", "Tree", "Sleep"], index=index_1)
print(data_1)
print()
index_2 = pd.Series(["Food", "ShoeSize", "Favorite"])
data_2 = pd.Series(data_1, index=index_2)
print(data_2)
Output:
Food Bambu
HappyPlace Tree
Favorite Sleep
dtype: object
Food Bambu
ShoeSize NaN
Favorite Sleep
dtype: object
pandas.Series.iloc
property Series.iloc
Purely integer-location based indexing for selection by position.
.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).
- An integer, e.g. 5.
- A list or array of integers, e.g. [4, 3, 0].
- A slice object with ints, e.g. 1:7.
- A boolean array.
- A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don’t have a reference to the calling object, but would like to base your selection on some value.
- A tuple of row and column indexes. The tuple elements consist of one of the above inputs, e.g. (0, 1).
import pandas as pd
index_1 = pd.Series(["Food", "HappyPlace", "Favorite"])
data_1 = pd.Series(["Bambu", "Tree", "Sleep"], index=index_1)
print(data_1.iloc[0])
print(data_1["Food"])
Converting a dictionary
import pandas as pd
data_1 = pd.Series({"A": 34, "B": 54, "C": "Blub"})
print(data_1)
Output:
A 34
B 54
C Blub
dtype: object
Operations on Series
Example: Math on one series
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data = rng.random((5))
data_1 = pd.Series(np_data, index=index_1)
print(data_1)
print()
print(data_1 > 0.5)
print()
print(data_1[data_1 > 0.5])
print()
print(sum(data_1))
Output:
A 0.772007
B 0.143811
C 0.524829
D 0.413733
E 0.100003
dtype: float64
A True
B False
C True
D False
E False
dtype: bool
A 0.772007
C 0.524829
dtype: float64
1.9543834923707668
Example: Math with two series
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)
print(data_1)
print()
print(data_2)
print()
print((data_1 + data_2))
print()
print((data_1 + data_2) * 3 + 10)
Output:
A 0.702998
B 0.032210
C 0.534611
D 0.839864
E 0.118698
dtype: float64
D 0.321691
E 0.024475
F 0.168798
G 0.232925
H 0.782430
dtype: float64
A NaN
B NaN
C NaN
D 1.161555
E 0.143173
F NaN
G NaN
H NaN
dtype: float64
A NaN
B NaN
C NaN
D 13.484666
E 10.429519
F NaN
G NaN
H NaN
dtype: float64
Example: Applying functions (pandas.Series.apply)
Series.apply(func, convert_dtype=_NoDefault.no_default, args=(), *, by_row='compat', **kwargs)
Invoke function on values of Series.
Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
print(data_1)
print()
print(data_1[["A", "D"]])
print()
data_2 = data_1.apply(np.log)
print(data_2)
print()
data_3 = data_1.apply(lambda x: x if x > 0.5 else 0)
print(data_3)
print()
Output:
A 0.803968
B 0.234188
C 0.511411
D 0.858326
E 0.374570
dtype: float64
A 0.803968
D 0.858326
dtype: float64
A -0.218195
B -1.451633
C -0.670581
D -0.152771
E -0.981978
dtype: float64
A 0.803968
B 0.000000
C 0.511411
D 0.858326
E 0.000000
dtype: float64
pandas.Series.isnull and pandas.Series.notnull
Note: A value set to NONE will lead to a NaN.
Series.isnull()
Series.isnull is an alias for Series.isna.
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True).
Series.notnull()
Series.notnull is an alias for Series.notna.
Detect existing (non-missing) values.
Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values.
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)
data_3 = data_1 + data_2
print(data_3)
print()
print(data_3.isnull())
print()
print(data_3[data_3.isnull()])
print()
print(data_3.notnull())
print()
print(data_3[data_3.notnull()])
Output
A NaN
B NaN
C NaN
D 0.970744
E 0.425544
F NaN
G NaN
H NaN
dtype: float64
A True
B True
C True
D False
E False
F True
G True
H True
dtype: bool
A NaN
B NaN
C NaN
F NaN
G NaN
H NaN
dtype: float64
A False
B False
C False
D True
E True
F False
G False
H False
dtype: bool
D 0.970744
E 0.425544
dtype: float64
pandas.Series.dropna or pandas.Series.fillna
Series.dropna(*, axis=0, inplace=False, how=None, ignore_index=False)
Return a new Series with missing values removed.
Series.fillna(value=None, *, method=None, axis=None, inplace=False, limit=None, downcast=_NoDefault.no_default)
Fill NA/NaN values using the specified method.
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)
data_3 = data_1 + data_2
print(data_3)
print()
print(data_3.dropna())
print()
print(data_3.fillna(0.0)) # 0.0 => Value for filling
print()
print()
print(data_3.fillna(3.3)) # 3.3 => Value for filling
print()
Output:
A NaN
B NaN
C NaN
D 0.660655
E 0.256244
F NaN
G NaN
H NaN
dtype: float64
D 0.660655
E 0.256244
dtype: float64
A 0.000000
B 0.000000
C 0.000000
D 0.660655
E 0.256244
F 0.000000
G 0.000000
H 0.000000
dtype: float64
A 3.300000
B 3.300000
C 3.300000
D 0.660655
E 0.256244
F 3.300000
G 3.300000
H 3.300000
dtype: float64
pandas.concat and pandas.Series.sort_index and pandas.Series.sort_values
pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=None)
Concatenate pandas objects along a particular axis.
Allows optional set logic along the other axes.
Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.
Series.sort_index(*, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None)
Sort Series by index labels.
Returns a new Series sorted by label if inplace argument is False, otherwise updates the original series and returns None.
Series.sort_values(*, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)
Sort by the values.
Sort a Series in ascending or descending order by some criterion.
import pandas as pd
import numpy as np
index_1 = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index_1)
index_2 = pd.Series(["D", "E", "F", "G", "H"])
rng = np.random.default_rng()
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index_2)
data_3 = pd.concat([data_1, data_2])
print(data_3)
print()
print(data_3.sort_index())
print()
print(data_3.sort_values())
print()
Output:
A 0.480872
B 0.830495
C 0.420633
D 0.824773
E 0.580569
D 0.224508
E 0.250787
F 0.056334
G 0.880224
H 0.552785
dtype: float64
A 0.480872
B 0.830495
C 0.420633
D 0.824773
D 0.224508
E 0.580569
E 0.250787
F 0.056334
G 0.880224
H 0.552785
dtype: float64
F 0.056334
D 0.224508
E 0.250787
C 0.420633
A 0.480872
H 0.552785
E 0.580569
D 0.824773
B 0.830495
G 0.880224
dtype: float64
DataFrame
class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=None)
Two-dimensional, size-mutable, potentially heterogeneous tabular data.
Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.
Combining two series into one dataframe
import pandas as pd
import numpy as np
index = pd.Series(["A", "B", "C", "D", "E"])
rng = np.random.default_rng()
np_data_1 = rng.random((5))
data_1 = pd.Series(np_data_1, index=index)
np_data_2 = rng.random((5))
data_2 = pd.Series(np_data_2, index=index)
data_3 = pd.concat([data_1, data_2], axis=1)
print(type(data_1)) # -> <class 'pandas.core.series.Series'>
print(type(data_2)) # -> <class 'pandas.core.series.Series'>
print(type(data_3)) # -> <class 'pandas.core.frame.DataFrame'>
print(data_3)
print()
print(data_3.columns) # -> RangeIndex(start=0, stop=2, step=1)
print(data_3.columns.values) # -> [0 1]
0 1
A 0.942032 0.213441
B 0.379446 0.937325
C 0.645035 0.799521
D 0.546175 0.656740
E 0.564155 0.546581
Renaming the columns
data_3.columns = ["Alpha", "Beta"]
print(data_3)
print()
print(data_3.columns) # -> Index(['Alpha', 'Beta'], dtype='object')
print()
print(data_3[ "Beta"])
Output:
Alpha Beta
A 0.942032 0.213441
B 0.379446 0.937325
C 0.645035 0.799521
D 0.546175 0.656740
E 0.564155 0.546581
A 0.213441
B 0.937325
C 0.799521
D 0.656740
E 0.546581
Name: Beta, dtype: float64
Saving (pandas.DataFrame.to_pickle) / loading (pandas.read_pickle) data ‘natively’
Save:
import pandas as pd
original_df = pd.DataFrame(
{"foo": range(5), "bar": range(5, 10)}
)
print(original_df)
pd.to_pickle(original_df, "./dummy.pkl")
Output:
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
Load:
import pandas as pd
unpickled_df = pd.read_pickle("./dummy.pkl")
print(unpickled_df)
Output:
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
read
pandas.read_pickle(filepath_or_buffer, compression='infer', storage_options=None)
Load pickled pandas object (or any object) from file.
write
DataFrame.to_pickle(path, compression='infer', protocol=5, storage_options=None)
Pickle (serialize) object to file.
I/O operations
Pickling |
Flat file |
Clipboard |
Excel |
JSON |
HTML |
XML |
Latex |
HDFStore: PyTables (HDF5) |
Feather |
Parquet |
ORC |
SAS |
SPSS |
SQL |
Google BigQuery |
STATA |
csv (“comma” separated values file)
read
pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=None, infer_datetime_format=_NoDefault.no_default, keep_date_col=False, date_parser=_NoDefault.no_default, date_format=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, on_bad_lines='error', delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None, dtype_backend=_NoDefault.no_default)
Read a comma-separated values (csv) file into DataFrame.
write
DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression='infer', quoting=None, quotechar='"', lineterminator=None, chunksize=None, date_format=None, doublequote=True, escapechar=None, decimal='.', errors='strict', storage_options=None)
Write object to a comma-separated values (csv) file.
Excel
read
pandas.read_excel(io, sheet_name=0, *, header=0, names=None, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, parse_dates=False, date_parser=_NoDefault.no_default, date_format=None, thousands=None, decimal='.', comment=None, skipfooter=0, storage_options=None, dtype_backend=_NoDefault.no_default, engine_kwargs=None)
Read an Excel file into a pandas DataFrame.
Supports xls, xlsx, xlsm, xlsb, odf, ods and odt file extensions read from a local filesystem or URL. Supports an option to read a single sheet or a list of sheets.
write
DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, inf_rep='inf', freeze_panes=None, storage_options=None, engine_kwargs=None)
Write object to an Excel sheet.
To write a single object to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.
Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.
JSON
read
pandas.read_json(path_or_buf, *, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, precise_float=False, date_unit=None, encoding=None, encoding_errors='strict', lines=False, chunksize=None, compression='infer', nrows=None, storage_options=None, dtype_backend=_NoDefault.no_default, engine='ujson')
Convert a JSON string to pandas object.
write
DataFrame.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=None, indent=None, storage_options=None, mode='w')
Convert the object to a JSON string.
Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.