pytutorial/numpy/ndarray/README.md
David Rotermund 76897aec23
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-15 11:06:31 +01:00

31 KiB
Raw Blame History

The N-dimensional array (ndarray)

{:.no_toc}

* TOC {:toc}

The goal

Class has a very important job as a core container type in Python. It is really hard to find a good overview how to use them in a good practice manner.

Questions to David Rotermund

Chaining of (ndarray) methods

import numpy as np
a = np.ones((3, 3))
b = a.mean(axis=1).max()
print(b) # -> 1.0

numpy.ndarray.fill

ndarray.fill(value)

Fill the array with a scalar value.

import numpy as np
A = np.ones((3, 3))
A.fill(7)
print(A)

Output:

[[7. 7. 7.]
 [7. 7. 7.]
 [7. 7. 7.]]

numpy.ndarray.ndim

ndarray.ndim

Number of array dimensions.

import numpy as np

A = np.ones((3, 3))
print(A.ndim)  # -> 2

numpy.ndarray.shape

ndarray.shape

Tuple of array dimensions.

import numpy as np

A = np.ones((3, 3))
print(A.shape)  # -> (3, 3)

numpy.ndarray.size

ndarray.size

Number of elements in the array.

import numpy as np

A = np.ones((3, 3))
print(A.size) # -> 9

numpy.ndarray.nbytes

{: .topic-optional} This is an optional topic!

ndarray.nbytes

Total bytes consumed by the elements of the array.

numpy.ndarray.itemsize

{: .topic-optional} This is an optional topic!

ndarray.itemsize

Length of one array element in bytes.

numpy.ndarray.copy

ndarray.copy(order='C')

Return a copy of the array.

numpy.ndarray.view

ndarray.view([dtype][, type])

New view of array with the same data.

numpy.ndarray.reshape

ndarray.reshape(shape, order='C')

Returns an array containing the same data with a new shape.

import numpy as np

A = np.arange(0, 6)
print(A.reshape((2, 3)))

Output:

[[0 1 2]
 [3 4 5]]

WARNING!!! Don't confuse reshape with resize!

numpy.ndarray.squeeze

ndarray.squeeze(axis=None)

Remove axes of length one from a.

import numpy as np

A = np.zeros((4, 1, 1)) 
print(A.shape) # -> (4, 1, 1)
A = A.squeeze()
print(A.shape) # -> (4,)

A = np.zeros((4, 1, 9, 1)) # -> (4, 1, 9, 1)
print(A.shape)
B = A.squeeze(axis=1) # -> (4, 9, 1)
print(B.shape)
print(np.may_share_memory(A, B)) # -> True

numpy.moveaxis

numpy.moveaxis(a, source, destination)

Move axes of an array to new positions.

Other axes remain in their original order.

import numpy as np

A = np.zeros((4, 1, 9, 1)) 
print(A.shape) # -> (4, 1, 9, 1)
B = np.moveaxis(A, 0, 1)
print(B.shape) # -> (1, 4, 9, 1)
print(np.may_share_memory(A, B)) # -> True

numpy.ndarray.swapaxes

ndarray.swapaxes(axis1, axis2)

Return a view of the array with axis1 and axis2 interchanged.

import numpy as np

A = np.zeros((4, 1, 9, 1))
print(A.shape) # -> (4, 1, 9, 1)
B = A.swapaxes(0, 1)
print(B.shape) # -> (1, 4, 9, 1)
print(np.may_share_memory(A, B)) # -> True

numpy.ndarray.T (Transposing a 2d matrix)

ndarray.T

View of the transposed array.

Same as self.transpose().

import numpy as np

A = np.zeros((4, 9))
B = A.T
print(A.shape)  # -> (4, 9)
print(B.shape)  # -> (9, 4)
print(np.may_share_memory(A, B)) # -> True

numpy.ndarray.transpose

{: .topic-optional} This is an optional topic!

ndarray.transpose(*axes)

Returns a view of the array with axes transposed.

numpy.ndarray.flatten

ndarray.flatten(order='C')

Return a copy of the array collapsed into one dimension.

import numpy as np

A = np.arange(0, 6)
A = A.reshape((2, 3))
print(A)
print()
B = A.flatten()
print(B)
print(np.may_share_memory(A, B))  # -> False

Output:

[[0 1 2]
 [3 4 5]]

[0 1 2 3 4 5]

numpy.ndarray.flat

ndarray.flat

A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Pythons built-in iterator object.

import numpy as np

A = np.arange(0, 6)
A = A.reshape((2, 3))

print(A.flat[0]) # -> 0
print(A.flat[1]) # -> 1
print(A.flat[2]) # -> 2
print(A.flat[3]) # -> 3
print(A.flat[4]) # -> 4
print(A.flat[5]) # -> 5

for i in A:
    print(i)

print("----")

for i in A.flat:
    print(i)

Output:

[0 1 2]
[3 4 5]
----
0
1
2
3
4
5

numpy.ndarray.dtype

ndarray.dtype

Data-type of the arrays elements.

import numpy as np

A = np.zeros((0, 6), dtype=np.float32)
print(A.dtype) # -> float32
B = A.astype(dtype=np.int64)
print(B.dtype) # -> int64
print(np.may_share_memory(A, B)) # -> False

numpy.ndarray.astype

ndarray.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.

import numpy as np

A = np.zeros((0, 6), dtype=np.float32)
print(A.dtype) # -> float32
B = A.astype(dtype=np.int64)
print(B.dtype) # -> int64
print(np.may_share_memory(A, B)) # -> False

Complex numbers

numpy.ndarray.real

ndarray.real

The real part of the array.

import numpy as np

A = np.array(1 + 0.5j)
print(A.real) # -> 1.0

numpy.ndarray.imag

ndarray.imag

The imaginary part of the array.

import numpy as np

A = np.array(1 + 0.5j)
print(A.imag) # -> 0.5

numpy.ndarray.conj

ndarray.conj()

Complex-conjugate all elements.

import numpy as np

A = np.array(1 + 0.5j)
print(A.conj()) # -> (1-0.5j)

numpy.ndarray.sort

ndarray.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to numpy.sort for full documentation.

import numpy as np

A = np.arange(0, 6)
A = np.concatenate((A, A))

print(A) # -> [0 1 2 3 4 5 0 1 2 3 4 5]
print()
A.sort()
print(A) # -> [0 0 1 1 2 2 3 3 4 4 5 5]

numpy.ndarray.argsort

ndarray.argsort(axis=-1, kind=None, order=None)

Returns the indices that would sort this array.

import numpy as np

A = np.arange(0, 6)
A = np.concatenate((A, A))

print(A)  # -> [0 1 2 3 4 5 0 1 2 3 4 5]
print()
idx = A.argsort()
print(idx)  # -> [ 0  6  1  7  2  8  3  9  4 10  5 11]

numpy.ndarray.sum and numpy.ndarray.mean

ndarray.sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)

Return the sum of the array elements over the given axis.

ndarray.mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)

Returns the average of the array elements along given axis.

import numpy as np

A = np.arange(0, 6).reshape((2, 3))

print(A.sum())  # -> 15
print(A.sum(axis=0))  # -> [3 5 7]
print(A.sum(axis=0).shape)  # -> (3,)
print(A.sum(axis=1))  # -> [ 3 12]
print(A.sum(axis=1).shape)  # -> (2,)

print(A.sum(axis=0, keepdims=True))
print(A.sum(axis=0, keepdims=True).shape) # -> (1, 3)
print()
print(A.sum(axis=1, keepdims=True))
print(A.sum(axis=0, keepdims=True).shape) # -> (1, 3)

Output:

[[3 5 7]]

[[ 3]
 [12]]

numpy.ndarray.cumsum

ndarray.cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

import numpy as np

A = np.arange(0, 6).reshape((2, 3))

print(A)
print()
print(A.cumsum())  # -> [ 0  1  3  6 10 15]
print(A.cumsum().shape)  # -> (6,)
print(A.cumsum(axis=0))
print()
print(A.cumsum(axis=0).shape)  # -> (2, 3)
print(A.cumsum(axis=1))  
print(A.cumsum(axis=1).shape)  # -> (2, 3)

Output:

[[0 1 2]
 [3 4 5]]

[[0 1 2]
 [3 5 7]]

[[ 0  1  3]
 [ 3  7 12]]

numpy.ndarray.prod

ndarray.prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)

Return the product of the array elements over the given axis

import numpy as np

A = np.arange(1, 7).reshape((2, 3))

print(A)
print(A.prod())  # -> 720
print(A.prod().shape)  # -> ()
print(A.prod(axis=0)) # -> [ 4 10 18]
print(A.prod(axis=0).shape) # -> (3,)
print(A.prod(axis=1))  # -> [  6 120]
print(A.prod(axis=1).shape)  # -> (2,)

Output:

[[1 2 3]
 [4 5 6]]

numpy.ndarray.cumprod

ndarray.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

import numpy as np

A = np.arange(1, 7).reshape((2, 3))

print(A)
print()
print(A.cumprod())  # -> [  1   2   6  24 120 720]
print(A.cumprod().shape)  # -> (6,)
print(A.cumprod(axis=0)) 
print()
print(A.cumprod(axis=0).shape) # -> (2, 3)
print(A.cumprod(axis=1))  
print(A.cumprod(axis=1).shape)  # -> (2, 3)

Output:

[[1 2 3]
 [4 5 6]]

[[ 1  2  3]
 [ 4 10 18]]

 [[  1   2   6]
 [  4  20 120]]

numpy.ndarray.clip

ndarray.clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to [min, max]. One of max or min must be given.

import numpy as np

A = np.arange(0, 8).reshape((2, 4))
print(A)
print()
print(A.clip(min=1, max=6))

Output:

[[0 1 2 3]
 [4 5 6 7]]

[[1 1 2 3]
 [4 5 6 6]]

numpy.ndarray.max and numpy.ndarray.min

ndarray.max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the maximum along a given axis.

ndarray.min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)

Return the minimum along a given axis.

import numpy as np

A = np.arange(0, 6).reshape((2, 3))

print(A)
print()
print(A.max())  # -> 5
print(A.max(axis=0))  # -> [3 4 5]
print(A.max(axis=0).shape)  # -> (3,)
print(A.max(axis=1))  # -> [2 5]
print(A.max(axis=1).shape)  # -> (2,)
print(A.max(axis=0, keepdims=True)) # -> [[3 4 5]]
print(A.max(axis=0, keepdims=True).shape) # -> (1, 3)
print(A.max(axis=1, keepdims=True))
print(A.max(axis=0, keepdims=True).shape) # -> (1, 3)

Output:

[[0 1 2]
 [3 4 5]]

[[2]
 [5]]

numpy.ndarray.argmax and numpy.ndarray.argmin

ndarray.argmax(axis=None, out=None, *, keepdims=False)

Return indices of the maximum values along the given axis.

ndarray.argmin(axis=None, out=None, *, keepdims=False)

Return indices of the minimum values along the given axis.

import numpy as np

A = np.arange(0, 6).reshape((2, 3))

print(A)
print()
print(A.argmax())  # -> 5
print(A.argmax(axis=0))  # -> [1 1 1]
print(A.argmax(axis=0).shape)  # -> (3,)
print(A.argmax(axis=1))  # -> [2 2]
print(A.argmax(axis=1).shape)  # -> (2,)
print(A.argmax(axis=0, keepdims=True))  # -> [[1 1 1]]
print(A.argmax(axis=0, keepdims=True).shape)  # -> (1, 3)
print(A.argmax(axis=1, keepdims=True))
print(A.argmax(axis=0, keepdims=True).shape)  # -> (1, 3)

Output:

[[0 1 2]
 [3 4 5]]

[[2]
 [2]]

numpy.ndarray.std and numpy.ndarray.var

ndarray.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the standard deviation of the array elements along given axis.

ndarray.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)

Returns the variance of the array elements, along given axis.

import numpy as np

rng = np.random.default_rng()
A = rng.random((2, 3))

print(A)
print()
print(A.var())  # -> 0.15743358550255018
print(A.var(axis=0))  # -> [0.19429192 0.15604444 0.00441136]
print(A.var(axis=0).shape)  # -> (3,)
print(A.var(axis=1))  # -> [0.18135622 0.00196335]
print(A.var(axis=1).shape)  # -> (2,)
print(A.var(axis=0, keepdims=True))  # -> [[0.19429192 0.15604444 0.00441136]]
print(A.var(axis=0, keepdims=True).shape)  # -> (1, 3)
print(A.var(axis=1, keepdims=True))
print(A.var(axis=0, keepdims=True).shape)  # -> (1, 3)

Output:

[[0.9804056  0.82416017 0.00909   ]
 [0.09883446 0.03411095 0.1419262 ]]

[[0.18135622]
 [0.00196335]]

numpy.ndarray.round

ndarray.round(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.

import numpy as np

A = np.array(np.pi)
print(A)  # -> 3.141592653589793
print(A.round(decimals=0))  # -> 3.0
print(A.round(decimals=1))  # -> 3.1
print(A.round(decimals=2))  # -> 3.14
print(A.round(decimals=3))  # -> 3.142

WARNING!!! This might be unexpected behavior for you:

import numpy as np

print(np.round(1.5))  # -> 2.0
print(np.round(2.5))  # -> 2.0
print(np.round(2.5 + 1e-15))  # -> 3.0

numpy.ndarray.trace

ndarray.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

import numpy as np

A = np.eye(3)

print(A)
print(A.trace())  # -> 3.0
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

numpy.ndarray.diagonal

ndarray.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed.

import numpy as np

rng = np.random.default_rng()
A = rng.random((3, 3))
print(A)
print(A.diagonal())  # -> [0.7434178  0.11672896]
print(A.diagonal(offset=1))  # -> [0.7434178  0.11672896]
print(A.diagonal(offset=2))  # -> [0.84915636]
print(A.diagonal(offset=-1))  # -> [0.10826248 0.50223328]
print(A.diagonal(offset=-2))  # -> [0.43068892]

Output

[[0.82574583 0.7434178  0.84915636]
 [0.10826248 0.39898052 0.11672896]
 [0.43068892 0.50223328 0.63444263]]

Array methods

Array conversion

ndarray.item(*args) Copy an element of an array to a standard Python scalar and return it.
ndarray.tolist() Return the array as an a.ndim-levels deep nested list of Python scalars.
ndarray.itemset(*args) Insert scalar into an array (scalar is cast to array's dtype, if possible)
ndarray.tostring([order]) A compatibility alias for tobytes, with exactly the same behavior.
ndarray.tobytes([order]) Construct Python bytes containing the raw data bytes in the array.
ndarray.tofile(fid[, sep, format]) Write array to a file as text or binary (default).
ndarray.dump(file) Dump a pickle of the array to the specified file.
ndarray.dumps() Returns the pickle of the array as a string.
ndarray.astype(dtype[, order, casting, ...]) Copy of the array, cast to a specified type.
ndarray.byteswap([inplace]) Swap the bytes of the array elements
ndarray.copy([order]) Return a copy of the array.
ndarray.view([dtype][, type]) New view of array with the same data.
ndarray.getfield(dtype[, offset]) Returns a field of the given array as a certain type.
ndarray.setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, WRITEBACKIFCOPY, respectively.
ndarray.fill(value) Fill the array with a scalar value.

Shape manipulation

ndarray.reshape(shape[, order]) Returns an array containing the same data with a new shape.
ndarray.resize(new_shape[, refcheck]) Change shape and size of array in-place.
ndarray.transpose(*axes) Returns a view of the array with axes transposed.
ndarray.swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 interchanged.
ndarray.flatten([order]) Return a copy of the array collapsed into one dimension.
ndarray.ravel([order]) Return a flattened array.
ndarray.squeeze([axis]) Remove axes of length one from a.

Item selection and manipulation

ndarray.take(indices[, axis, out, mode]) Return an array formed from the elements of a at the given
ndarray.put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ndarray.repeat(repeats[, axis]) Repeat elements of an array.
ndarray.choose(choices[, out, mode]) Use an index array to construct a new array from a set of choices.
ndarray.sort([axis, kind, order]) Sort an array in-place.
ndarray.argsort([axis, kind, order]) Returns the indices that would sort this array.
ndarray.partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array.
ndarray.argpartition(kth[, axis, kind, order]) Returns the indices that would partition
ndarray.searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted in a to maintain order.
ndarray.nonzero() Return the indices of the elements that are non-zero.
ndarray.compress(condition[, axis, out]) Return selected slices of this array along given axis.
ndarray.diagonal([offset, axis1, axis2]) Return specified diagonals.

Calculation

ndarray.max([axis, out, keepdims, initial, ...]) Return the maximum along a given axis.
ndarray.argmax([axis, out, keepdims]) Return indices of the maximum values along the given axis.
ndarray.min([axis, out, keepdims, initial, ...]) Return the minimum along a given axis.
ndarray.argmin([axis, out, keepdims]) Return indices of the minimum values along the given axis.
ndarray.ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a given axis.
ndarray.clip([min, max, out]) Return an array whose values are limited to [min, max].
ndarray.conj() Complex-conjugate all elements.
ndarray.round([decimals, out]) Return a with each element rounded to the given number of decimals.
ndarray.trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
ndarray.sum([axis, dtype, out, keepdims, ...]) Return the sum of the array elements over the given axis.
ndarray.cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the given axis.
ndarray.mean([axis, dtype, out, keepdims, where]) Returns the average of the array elements along given axis.
ndarray.var([axis, dtype, out, ddof, ...]) Returns the variance of the array elements, along given axis.
ndarray.std([axis, dtype, out, ddof, ...]) Returns the standard deviation of the array elements along given axis.
ndarray.prod([axis, dtype, out, keepdims, ...]) Return the product of the array elements over the given axis
ndarray.cumprod([axis, dtype, out]) Return the cumulative product of the elements along the given axis.
ndarray.all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
ndarray.any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to True.

Arithmetic, matrix multiplication, and comparison operations

Each of the arithmetic operations (+, -, *, /, //, %, divmod(), ** or pow(), <<, >>, &, ^, |, ~) and the comparisons (==, <, >, <=, >=, !=) is equivalent to the corresponding universal function in NumPy.

for in-place operations see here

ndarray.__lt__(value, /) Return self<value.
ndarray.__le__(value, /) Return self<=value.
ndarray.__gt__(value, /) Return self>value.
ndarray.__ge__(value, /) Return self>=value.
ndarray.__eq__(value, /) Return self==value.
ndarray.__ne__(value, /) Return self!=value.
ndarray.__bool__(/) True if self else False
ndarray.__neg__(/) -self
ndarray.__pos__(/) +self
ndarray.__abs__(self)
ndarray.__invert__(/) ~self
ndarray.__add__(value, /) Return self+value.
ndarray.__sub__(value, /) Return self-value.
ndarray.__mul__(value, /) Return self*value.
ndarray.__truediv__(value, /) Return self/value.
ndarray.__floordiv__(value, /) Return self//value.
ndarray.__mod__(value, /) Return self%value.
ndarray.__divmod__(value, /) Return divmod(self, value).
ndarray.__pow__(value[, mod]) Return pow(self, value, mod).
ndarray.__lshift__(value, /) Return self<<value.
ndarray.__rshift__(value, /) Return self>>value.
ndarray.__and__(value, /) Return self&value.
ndarray.__or__(value, /) Return self
ndarray.__xor__(value, /) Return self^value.
ndarray.__matmul__(value, /) Return self@value.

Special methods

special methods