pytutorial/numpy/load_save/README.md
David Rotermund eb9c389d15
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-19 11:37:32 +01:00

185 lines
5.5 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# [numpy.save](https://numpy.org/doc/stable/reference/generated/numpy.save.html) and [numpy.load](https://numpy.org/doc/stable/reference/generated/numpy.load.html)
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Let's [save and load data under numpy](https://numpy.org/doc/stable/reference/routines.io.html). This can be more complicated than expected.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## [np.save](https://numpy.org/doc/stable/reference/generated/numpy.save.html) and [np.load](https://numpy.org/doc/stable/reference/generated/numpy.load.html)
A normal np.save and np.load cycle may look like this:
```python
import numpy as np
rng = np.random.default_rng()
a_original: np.ndarray = rng.random((100, 10))
np.save("a.npy", a_original)
a_load: np.ndarray = np.load("a.npy")
print(np.abs(a_original - a_load).sum()) # -> 0.0
```
## [np.savez](https://numpy.org/doc/stable/reference/generated/numpy.savez.html)
We can save more than one variable into one file. We need to use np.savez for this. Now the file extension is npz instead of npy. This is required! 
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original)
np_file = np.load("c.npz")
np_file_keys: list = list(np_file.keys())
print(np_file_keys) # -> ['a_original', 'b_original', 'c_original']
```
Please don't use savez like this because this can cause human errors down the road:
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
# np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original)
np.savez("d.npz", a_original, b_original, c_original)
np_file = np.load("d.npz")
np_file_keys: list = list(np_file.keys())
print(np_file_keys) # -> ['arr_0', 'arr_1', 'arr_2']
```
You don't need to keep the variable name but keep it human readable:
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
d_original = rng.random((100, 10))
np.savez("e.npz", what=a_original, a=b_original, nice=c_original, day=d_original)
np_file = np.load("e.npz")
np_file_keys: list = list(np_file.keys())
print(np_file_keys) # -> ['what', 'a', 'nice', 'day']
```
Now we can work with the file and the stored variables: 
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original)
np_file = np.load("c.npz")
print(np.abs(a_original - np_file["a_original"]).sum()) # -> 0.0
print(np.abs(b_original - np_file["b_original"]).sum()) # -> 0.0
print(np.abs(c_original - np_file["c_original"]).sum()) # -> 0.0
```
## [np.savez_compressed](https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html)
We can compress the data too:
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
b_original = rng.random((100, 10))
c_original = rng.random((100, 10))
np.savez_compressed(
"f.npz", a_original=a_original, b_original=b_original, c_original=c_original
)
np_file = np.load("f.npz")
print(np.abs(a_original - np_file["a_original"]).sum()) # -> 0.0
print(np.abs(b_original - np_file["b_original"]).sum()) # -> 0.0
print(np.abs(c_original - np_file["c_original"]).sum()) # -> 0.0
```
## Text files [numpy.savetxt](https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html) and [numpy.loadtxt](https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html)
```python
numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ', encoding=None)
```
> Save an array to a text file.
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
np.savetxt("data.txt", a_original)
```
```python
numpy.loadtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes', max_rows=None, *, quotechar=None, like=None)
```
> Load data from a text file.
```python
import numpy as np
rng = np.random.default_rng()
a_original = rng.random((100, 10))
np.savetxt("data.txt", a_original)
a_load = np.loadtxt("data.txt")
print(a_original.shape) # -> (100, 10)
print(a_load.shape) # -> (100, 10)
print(np.abs(a_original - a_load).sum()) # -> 0.0
```
### [numpy.genfromtxt](https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html)
{: .topic-optional}
This is an optional topic!
```python
numpy.genfromtxt(fname, dtype=<class 'float'>, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=" !#$%&'()*+, -./:;<=>?@[\\]^{|}~", replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding='bytes', *, ndmin=0, like=None)
```
> Load data from a text file, with missing values handled as specified.
>
> Each line past the first skip_header lines is split at the delimiter character, and characters following the comments character are discarded.