pytutorial/scikit-learn/kmeans/README.md
David Rotermund 061ed3f298
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-19 14:39:41 +01:00

201 lines
5.4 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# KMeans
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
KMeans allows to find clusters in a data set.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## Test data
```python
import numpy as np
import matplotlib.pyplot as plt
rng = np.random.default_rng(1)
rng = np.random.default_rng()
a_x = rng.normal(1.5, 1.0, size=(1000))
a_y = rng.normal(3.0, 1.0, size=(1000))
b_x = rng.normal(0.0, 1.0, size=(1000))
b_y = rng.normal(0.0, 1.0, size=(1000))
plt.plot(a_x, a_y, "c.")
plt.plot(b_x, b_y, "m.")
plt.show()
```
![image0](image0.png)
## [sklearn.cluster.KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) and its [fit](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit)
```python
class sklearn.cluster.KMeans(n_clusters=8, *, init='k-means++', n_init='warn', max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='lloyd')
```
> K-Means clustering.
Attribute:
> **cluster_centers_** : ndarray of shape (n_clusters, n_features)
> Coordinates of cluster centers. If the algorithm stops before fully converging (see tol and max_iter), these will not be consistent with labels_.
Method:
```python
fit(X, y=None, sample_weight=None)
```
> Compute k-means clustering
> **X**: {array-like, sparse matrix} of shape (n_samples, n_features)
> Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if its not in CSR format.
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
rng = np.random.default_rng(1)
a_x = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
b_y = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
kmeans = KMeans(n_clusters=2, n_init = 10)
kmeans.fit(data)
plt.plot(a_x, a_y, "c.")
plt.plot(b_x, b_y, "m.")
plt.plot(
kmeans.cluster_centers_[0, 0], kmeans.cluster_centers_[0, 1], "k*", markersize=12
)
plt.plot(
kmeans.cluster_centers_[1, 0], kmeans.cluster_centers_[1, 1], "k*", markersize=12
)
plt.show()
```
![image1](image1.png)
> **labels_** : ndarray of shape (n_samples,)
> Labels of each point
## What does the algorithm „think“ where the data points belong?
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
rng = np.random.default_rng(1)
a_x = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
b_y = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
kmeans = KMeans(n_clusters=2, n_init = 10)
kmeans.fit(data)
labels = kmeans.labels_
idx_0 = np.where(labels == 0)[0]
idx_1 = np.where(labels == 1)[0]
plt.plot(data[idx_0, 0], data[idx_0, 1], "r.")
plt.plot(data[idx_1, 0], data[idx_1, 1], "b.")
plt.plot(
kmeans.cluster_centers_[0, 0], kmeans.cluster_centers_[0, 1], "k*", markersize=12
)
plt.plot(
kmeans.cluster_centers_[1, 0], kmeans.cluster_centers_[1, 1], "k*", markersize=12
)
plt.show()
```
![image2](image2.png)
## [predict](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.predict)
```python
predict(X, sample_weight='deprecated')
```
> Predict the closest cluster each sample in X belongs to.
>
> In the vector quantization literature, cluster\_centers\_ is called the code book and each value returned by predict is the index of the closest code in the code book.
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
rng = np.random.default_rng(1)
a_x = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_a = np.concatenate((a_x, a_y), axis=1)
b_x = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
b_y = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_b = np.concatenate((b_x, b_y), axis=1)
data = np.concatenate((data_a, data_b), axis=0)
kmeans = KMeans(n_clusters=2, n_init=10)
kmeans.fit(data)
x = np.linspace(data[:, 0].min(), data[:, 0].max(), 100)
y = np.linspace(data[:, 1].min(), data[:, 1].max(), 100)
xx, yy = np.meshgrid(x, y)
xx_r = xx.ravel()[:, np.newaxis]
yy_r = yy.ravel()[:, np.newaxis]
print(xx.shape) # -> (100, 100)
print(xx_r.shape) # -> (10000, 1)
print(yy.shape) # -> (100, 100)
print(yy_r.shape) # -> (10000, 1)
coordinates = np.concatenate((xx_r, yy_r), axis=1)
print(coordinates.shape) # -> (10000, 2)
labels = kmeans.predict(coordinates)
idx_0 = np.where(labels == 0)[0]
idx_1 = np.where(labels == 1)[0]
plt.plot(coordinates[idx_0, 0], coordinates[idx_0, 1], "r.")
plt.plot(coordinates[idx_1, 0], coordinates[idx_1, 1], "b.")
plt.plot(
kmeans.cluster_centers_[0, 0], kmeans.cluster_centers_[0, 1], "k*", markersize=12
)
plt.plot(
kmeans.cluster_centers_[1, 0], kmeans.cluster_centers_[1, 1], "k*", markersize=12
)
plt.show()
```
![image3](image3.png)