c3623fd035
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
653 lines
24 KiB
Markdown
653 lines
24 KiB
Markdown
# Tensorflow / Keras -- A fast non-introduction
|
|
{:.no_toc}
|
|
|
|
<nav markdown="1" class="toc-class">
|
|
* TOC
|
|
{:toc}
|
|
</nav>
|
|
|
|
## Top
|
|
|
|
This is a fast overview how to get an MNIST example running under TF Keras
|
|
|
|
If you just want to start with Tensorflow / Keras (especially if it is a scientific project), then you want to reconsider using Keras. In this case please check (& use) PyTorch.
|
|
|
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
|
|
|
|
|
## Data loader / Data generator
|
|
|
|
|||
|
|
|---|---|
|
|
| [keras.utils.Sequence](https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence) | "Base object for fitting to a sequence of data, such as a dataset."|
|
|
| [tf.keras.utils.to_categorical](https://www.tensorflow.org/api_docs/python/tf/keras/utils/to_categorical) | "Converts a class vector (integers) to binary class matrix."|
|
|
|
|
|
|
## Basic
|
|
|
|
```python
|
|
from tensorflow import keras
|
|
import numpy as np
|
|
|
|
|
|
class DataGenerator(keras.utils.Sequence):
|
|
def __init__(
|
|
self,
|
|
train: bool = True,
|
|
size_of_batch: int = 32,
|
|
number_of_classes: int = 10,
|
|
do_shuffle: bool = True,
|
|
) -> None:
|
|
super(DataGenerator, self).__init__()
|
|
|
|
if train is True:
|
|
self.pattern_storage: np.ndarray = np.load("./train_pattern_storage.npy")
|
|
self.label_storage: np.ndarray = np.load("./train_label_storage.npy")
|
|
else:
|
|
self.pattern_storage = np.load("./test_pattern_storage.npy")
|
|
self.label_storage = np.load("./test_label_storage.npy")
|
|
|
|
self.pattern_storage = self.pattern_storage.astype(np.float32)
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
self.dimensions: tuple[int, int] = (
|
|
self.pattern_storage.shape[1],
|
|
self.pattern_storage.shape[2],
|
|
)
|
|
|
|
# How many pattern are there?
|
|
self.number_of_pattern: int = self.label_storage.shape[0]
|
|
|
|
self.size_of_batch: int = size_of_batch
|
|
|
|
self.number_of_classes: int = number_of_classes
|
|
self.do_shuffle: bool = do_shuffle
|
|
|
|
if self.pattern_storage.ndim == 3:
|
|
self.number_of_channel: int = 1
|
|
else:
|
|
self.number_of_channel = self.pattern_storage.shape[3]
|
|
|
|
self.available_indices: np.ndarray = np.arange(self.number_of_pattern)
|
|
|
|
self.on_epoch_end()
|
|
|
|
def on_epoch_end(self) -> None:
|
|
self.available_indices = np.arange(self.number_of_pattern)
|
|
|
|
if self.do_shuffle is True:
|
|
np.random.shuffle(self.available_indices)
|
|
|
|
def __getitem__(self, index: int) -> tuple[np.ndarray, np.ndarray]:
|
|
selected_indices: np.ndarray = self.available_indices[
|
|
index * self.size_of_batch : (index + 1) * self.size_of_batch
|
|
]
|
|
image, target = self.__data_generation(selected_indices)
|
|
return image, target
|
|
|
|
def __data_generation(
|
|
self, list_of_indice: np.ndarray
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
image = np.empty(
|
|
(self.size_of_batch, *self.dimensions, self.number_of_channel),
|
|
dtype=np.float32,
|
|
)
|
|
target = np.empty((self.size_of_batch), dtype=int)
|
|
|
|
for i in range(0, len(list_of_indice)):
|
|
|
|
if self.pattern_storage.ndim == 3:
|
|
image[i, :, :, 0] = self.pattern_storage[
|
|
self.available_indices[list_of_indice[i]], :, :
|
|
]
|
|
else:
|
|
image[i, :, :, :] = self.pattern_storage[
|
|
self.available_indices[list_of_indice[i]], :, :, :
|
|
]
|
|
|
|
target[i] = self.label_storage[self.available_indices[list_of_indice[i]]]
|
|
|
|
return image, keras.utils.to_categorical(
|
|
target, num_classes=self.number_of_classes
|
|
)
|
|
|
|
def __len__(self):
|
|
return int(np.floor(self.number_of_pattern / self.size_of_batch))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pass
|
|
```
|
|
|
|
## With data augmentation
|
|
|
|
To the pre-processing chain **self.data_augmentation** you can add other preprocessing layers which are then applied to the input before given to the network.
|
|
|
|
```python
|
|
from tensorflow import keras
|
|
import numpy as np
|
|
|
|
|
|
class DataGenerator(keras.utils.Sequence):
|
|
def __init__(
|
|
self,
|
|
train: bool = True,
|
|
size_of_batch: int = 32,
|
|
number_of_classes: int = 10,
|
|
do_shuffle: bool = True,
|
|
) -> None:
|
|
super(DataGenerator, self).__init__()
|
|
|
|
if train is True:
|
|
self.pattern_storage: np.ndarray = np.load("./train_pattern_storage.npy")
|
|
self.label_storage: np.ndarray = np.load("./train_label_storage.npy")
|
|
else:
|
|
self.pattern_storage = np.load("./test_pattern_storage.npy")
|
|
self.label_storage = np.load("./test_label_storage.npy")
|
|
|
|
self.pattern_storage = self.pattern_storage.astype(np.float32)
|
|
self.pattern_storage /= np.max(self.pattern_storage)
|
|
|
|
self.dimensions: tuple[int, int] = (
|
|
self.pattern_storage.shape[1],
|
|
self.pattern_storage.shape[2],
|
|
)
|
|
reduction: tuple[int, int] = (4, 4)
|
|
|
|
if train is True:
|
|
self.data_augmentation = keras.Sequential(
|
|
[
|
|
keras.layers.RandomCrop(
|
|
height=self.dimensions[0] - reduction[0],
|
|
width=self.dimensions[1] - reduction[1],
|
|
),
|
|
]
|
|
)
|
|
else:
|
|
self.data_augmentation = keras.Sequential(
|
|
[
|
|
keras.layers.CenterCrop(
|
|
height=self.dimensions[0] - reduction[0],
|
|
width=self.dimensions[1] - reduction[1],
|
|
),
|
|
]
|
|
)
|
|
|
|
# How many pattern are there?
|
|
self.number_of_pattern: int = self.label_storage.shape[0]
|
|
|
|
self.size_of_batch: int = size_of_batch
|
|
|
|
self.number_of_classes: int = number_of_classes
|
|
self.do_shuffle: bool = do_shuffle
|
|
|
|
if self.pattern_storage.ndim == 3:
|
|
self.number_of_channel: int = 1
|
|
else:
|
|
self.number_of_channel = self.pattern_storage.shape[3]
|
|
|
|
self.available_indices: np.ndarray = np.arange(self.number_of_pattern)
|
|
|
|
self.on_epoch_end()
|
|
|
|
def on_epoch_end(self) -> None:
|
|
self.available_indices = np.arange(self.number_of_pattern)
|
|
|
|
if self.do_shuffle is True:
|
|
np.random.shuffle(self.available_indices)
|
|
|
|
def __getitem__(self, index: int) -> tuple[np.ndarray, np.ndarray]:
|
|
selected_indices: np.ndarray = self.available_indices[
|
|
index * self.size_of_batch : (index + 1) * self.size_of_batch
|
|
]
|
|
image, target = self.__data_generation(selected_indices)
|
|
return image, target
|
|
|
|
def __data_generation(
|
|
self, list_of_indice: np.ndarray
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
image = np.empty(
|
|
(self.size_of_batch, *self.dimensions, self.number_of_channel),
|
|
dtype=np.float32,
|
|
)
|
|
target = np.empty((self.size_of_batch), dtype=int)
|
|
|
|
for i in range(0, len(list_of_indice)):
|
|
|
|
if self.pattern_storage.ndim == 3:
|
|
image[i, :, :, 0] = self.pattern_storage[
|
|
self.available_indices[list_of_indice[i]], :, :
|
|
]
|
|
else:
|
|
image[i, :, :, :] = self.pattern_storage[
|
|
self.available_indices[list_of_indice[i]], :, :, :
|
|
]
|
|
|
|
target[i] = self.label_storage[self.available_indices[list_of_indice[i]]]
|
|
|
|
image = self.data_augmentation(image)
|
|
return image, keras.utils.to_categorical(
|
|
target, num_classes=self.number_of_classes
|
|
)
|
|
|
|
def __len__(self):
|
|
return int(np.floor(self.number_of_pattern / self.size_of_batch))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pass
|
|
```
|
|
|
|
## Train an example MNIST network
|
|
|
|
|||
|
|
|---|---|
|
|
|[tf.keras.backend.clear_session](https://www.tensorflow.org/api_docs/python/tf/keras/backend/clear_session) | "Resets all state generated by Keras."|
|
|
|[tf.keras.Sequential](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential) | "Sequential groups a linear stack of layers into a tf.keras.Model."|
|
|
|[network.add()](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#add) | "Adds a layer instance on top of the layer stack." |
|
|
|[tf.keras.layers.Conv2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D) | "2D convolution layer (e.g. spatial convolution over images)."|
|
|
|[tf.keras.layers.MaxPool2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPooling2D) | "Max pooling operation for 2D spatial data."|
|
|
|[tf.keras.layers.Flatten](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten) | "Flattens the input. Does not affect the batch size."|
|
|
|[tf.keras.layers.Dense](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense) | "Just your regular densely-connected NN layer."|
|
|
|[network.compile()](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#compile) | "Configures the model for training."|
|
|
|[tf.keras.metrics.categorical_crossentropy](https://www.tensorflow.org/api_docs/python/tf/keras/metrics/categorical_crossentropy) | "Computes the categorical crossentropy loss."|
|
|
|[tf.keras.optimizers.Adam](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam) | "Optimizer that implements the Adam algorithm."|
|
|
|[network.fit() ](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#fit) | Trains the model for a fixed number of epochs (iterations on a dataset).|
|
|
|[network.summary()](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#summary) | "Prints a string summary of the network."|
|
|
|[network.save()](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#save) | "Saves the model to Tensorflow SavedModel or a single HDF5 file."|
|
|
|
|
Parameters for the layers:
|
|
|
|
|||
|
|
|---|---|
|
|
|[padding](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D) | "One of "valid", "same" or "causal" (case-insensitive). "valid" means no padding. "same" results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. "causal" results in causal (dilated) convolutions, e.g. output[t] does not depend on input[t+1:]. "|
|
|
|[use_bias](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D)| "Boolean, whether the layer uses a bias vector."|
|
|
|[activation](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D)| "Activation function to use. If you don't specify anything, no activation is applied (see [keras.activations](https://www.tensorflow.org/api_docs/python/tf/keras/activations))."|
|
|
[data_format](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D)| " A string, one of channels_last (default) or channels_first."|
|
|
|
|
```python
|
|
from tensorflow import keras
|
|
from DataGenerator import DataGenerator
|
|
|
|
epoch_max: int = 50
|
|
number_of_classes: int = 10
|
|
size_of_batch_train: int = 100
|
|
|
|
train_data = DataGenerator(
|
|
train=True,
|
|
size_of_batch=size_of_batch_train,
|
|
number_of_classes=number_of_classes,
|
|
do_shuffle=True,
|
|
)
|
|
|
|
number_of_channels: int = train_data.number_of_channel
|
|
input_dimensions = train_data.dimensions
|
|
number_of_pattern_train = train_data.number_of_pattern
|
|
|
|
number_of_output_channels_conv1: int = 32
|
|
number_of_output_channels_conv2: int = 64
|
|
number_of_neurons_flatten1: int = 1024
|
|
|
|
kernel_size_conv1: tuple[int, int] = (5, 5)
|
|
kernel_size_pool1: tuple[int, int] = (2, 2)
|
|
kernel_size_conv2: tuple[int, int] = (5, 5)
|
|
kernel_size_pool2: tuple[int, int] = (2, 2)
|
|
|
|
stride_conv1: tuple[int, int] = (1, 1)
|
|
stride_pool1: tuple[int, int] = (2, 2)
|
|
stride_conv2: tuple[int, int] = (1, 1)
|
|
stride_pool2: tuple[int, int] = (2, 2)
|
|
|
|
|
|
keras.backend.clear_session()
|
|
|
|
network = keras.Sequential()
|
|
|
|
# Conv 1
|
|
network.add(
|
|
keras.layers.Conv2D(
|
|
number_of_output_channels_conv1,
|
|
kernel_size=kernel_size_conv1,
|
|
activation="relu",
|
|
input_shape=(input_dimensions[0], input_dimensions[1], number_of_channels),
|
|
padding="valid",
|
|
strides=stride_conv1,
|
|
data_format="channels_last",
|
|
use_bias=True,
|
|
)
|
|
)
|
|
|
|
# Pool 1
|
|
network.add(
|
|
keras.layers.MaxPooling2D(
|
|
pool_size=kernel_size_pool1,
|
|
padding="valid",
|
|
strides=stride_pool1,
|
|
data_format="channels_last",
|
|
)
|
|
)
|
|
|
|
# Conv 2
|
|
network.add(
|
|
keras.layers.Conv2D(
|
|
number_of_output_channels_conv2,
|
|
kernel_size=kernel_size_conv2,
|
|
activation="relu",
|
|
padding="valid",
|
|
strides=stride_conv2,
|
|
data_format="channels_last",
|
|
use_bias=True,
|
|
)
|
|
)
|
|
|
|
# Pool 2
|
|
network.add(
|
|
keras.layers.MaxPooling2D(
|
|
pool_size=kernel_size_pool2,
|
|
padding="valid",
|
|
strides=stride_pool2,
|
|
data_format="channels_last",
|
|
)
|
|
)
|
|
|
|
# Flatten
|
|
network.add(keras.layers.Flatten(data_format="channels_last"))
|
|
|
|
# Full layer
|
|
network.add(
|
|
keras.layers.Dense(number_of_neurons_flatten1, activation="relu", use_bias=True)
|
|
)
|
|
|
|
# Output layer
|
|
network.add(keras.layers.Dense(number_of_classes, activation="softmax"))
|
|
|
|
network.compile(
|
|
loss=keras.losses.categorical_crossentropy,
|
|
optimizer=keras.optimizers.Adam(),
|
|
metrics=["accuracy"],
|
|
)
|
|
|
|
for epoch_id in range(0, epoch_max):
|
|
print(f"Epoch: {epoch_id} of {epoch_max - 1}")
|
|
network.fit(x=train_data)
|
|
|
|
network.summary()
|
|
network.save("Model_" + str(epoch_id) + ".h5")
|
|
```
|
|
|
|
## Test the example network performance
|
|
|
|
|||
|
|
|---|---|
|
|
|[tf.keras.models.load_model](https://www.tensorflow.org/api_docs/python/tf/keras/saving/load_model) | "Loads a model saved via model.save()."|
|
|
|[network.evaluate()](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#evaluate) | "Returns the loss value & metrics values for the model in test mode."|
|
|
|
|
```python
|
|
from tensorflow import keras
|
|
from DataGenerator import DataGenerator
|
|
|
|
number_of_classes: int = 10
|
|
size_of_batch_test: int = 100
|
|
model_id: int = 49
|
|
|
|
test_data = DataGenerator(
|
|
train=False,
|
|
size_of_batch=size_of_batch_test,
|
|
number_of_classes=number_of_classes,
|
|
do_shuffle=False,
|
|
)
|
|
|
|
keras.backend.clear_session()
|
|
|
|
network = keras.models.load_model("./Model_" + str(model_id) + ".h5")
|
|
|
|
test_loss, test_acc = network.evaluate(x=test_data)
|
|
|
|
print(f"Correct: {test_acc * 100.0:.2f}%")
|
|
```
|
|
## How to extract the activities from the network
|
|
|
|
```python
|
|
from tensorflow import keras
|
|
from DataGenerator import DataGenerator
|
|
import numpy as np
|
|
|
|
number_of_classes: int = 10
|
|
size_of_batch_test: int = 100
|
|
model_id: int = 49
|
|
pattern_batch_id: int = 0
|
|
pattern_id: int = 42
|
|
|
|
test_data = DataGenerator(
|
|
train=False,
|
|
size_of_batch=size_of_batch_test,
|
|
number_of_classes=number_of_classes,
|
|
do_shuffle=False,
|
|
)
|
|
|
|
keras.backend.clear_session()
|
|
|
|
network = keras.models.load_model("./Model_" + str(model_id) + ".h5")
|
|
|
|
image, target = test_data.__getitem__(pattern_batch_id)
|
|
the_target = target[pattern_id]
|
|
|
|
print("Layer 1 (Conv1)")
|
|
input_0 = image[pattern_id : pattern_id + 1, :, :, :]
|
|
output_0 = network.layers[0](input_0)
|
|
|
|
print("Input Shape:")
|
|
print(input_0.shape)
|
|
print("Output Shape:")
|
|
print(output_0.numpy().shape)
|
|
print("")
|
|
|
|
print("Layer 2 (Pool1)")
|
|
input_1 = output_0
|
|
output_1 = network.layers[1](input_1)
|
|
|
|
print("Input Shape:")
|
|
print(input_1.numpy().shape)
|
|
print("Output Shape:")
|
|
print(output_1.numpy().shape)
|
|
print("")
|
|
|
|
print("Layer 3 (Conv2)")
|
|
input_2 = output_1
|
|
output_2 = network.layers[2](input_2)
|
|
|
|
print("Input Shape:")
|
|
print(input_2.numpy().shape)
|
|
print("Output Shape:")
|
|
print(output_2.numpy().shape)
|
|
print("")
|
|
|
|
print("Layer 4 (Pool2)")
|
|
input_3 = output_2
|
|
output_3 = network.layers[3](input_3)
|
|
|
|
print("Input Shape:")
|
|
print(input_3.numpy().shape)
|
|
print("Output Shape:")
|
|
print(output_3.numpy().shape)
|
|
print("")
|
|
|
|
print("Layer 5 (Flatten)")
|
|
input_4 = output_3
|
|
output_4 = network.layers[4](input_4)
|
|
|
|
print("Input Shape:")
|
|
print(input_4.numpy().shape)
|
|
print("Output Shape:")
|
|
print(output_4.numpy().shape)
|
|
print("")
|
|
|
|
print("Layer 6 (Full)")
|
|
input_5 = output_4
|
|
output_5 = network.layers[5](input_5)
|
|
|
|
print("Input Shape:")
|
|
print(input_5.numpy().shape)
|
|
print("Output Shape:")
|
|
print(output_5.numpy().shape)
|
|
print("")
|
|
|
|
print("Layer 7 (Output)")
|
|
input_6 = output_5
|
|
output_6 = network.layers[6](input_6)
|
|
|
|
print("Input Shape:")
|
|
print(input_6.numpy().shape)
|
|
print("Output Shape:")
|
|
print(output_6.numpy().shape)
|
|
print("")
|
|
|
|
print("\nEstimation")
|
|
print(np.round(output_6.numpy(), 4))
|
|
print("Strongest reponse is at " + str(np.argmax(output_6.numpy())))
|
|
print("Correct output is " + str(np.argmax(the_target)))
|
|
```
|
|
|
|
## Extracting weight and bias
|
|
|
|
Here is one way to extract the weights and bias of the whole network. Alternatively you can use [get_weights](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer#get_weights) from [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) in combination with [get_layer](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#get_layer) of [tf.keras.Sequential](https://www.tensorflow.org/api_docs/python/tf/keras/Sequential).
|
|
|
|
```python
|
|
from tensorflow import keras
|
|
from DataGenerator import DataGenerator
|
|
|
|
number_of_classes: int = 10
|
|
size_of_batch_test: int = 100
|
|
model_id: int = 49
|
|
pattern_batch_id: int = 0
|
|
pattern_id: int = 42
|
|
|
|
test_data = DataGenerator(
|
|
train=False,
|
|
size_of_batch=size_of_batch_test,
|
|
number_of_classes=number_of_classes,
|
|
do_shuffle=False,
|
|
)
|
|
|
|
keras.backend.clear_session()
|
|
|
|
network = keras.models.load_model("./Model_" + str(model_id) + ".h5")
|
|
|
|
weights_bias = network.get_weights()
|
|
|
|
counter_layer: int = 0
|
|
for i in range(0, len(weights_bias), 2):
|
|
print("Layer " + str(counter_layer) + " weights_bias position: " + str(i) + " =>")
|
|
print(weights_bias[i].shape)
|
|
counter_layer += 1
|
|
|
|
print("")
|
|
|
|
counter_layer = 0
|
|
for i in range(1, len(weights_bias), 2):
|
|
print("Bias " + str(counter_layer) + " weights_bias position: " + str(i) + " =>")
|
|
print(weights_bias[i].shape)
|
|
counter_layer += 1
|
|
```
|
|
|
|
## Type of layers
|
|
|
|
Reduced list with the most relevant network layers
|
|
|||
|
|
|---|---|
|
|
|[Activation](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Activation)| Applies an activation function to an output.|
|
|
|[AveragePooling1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D)| Average pooling for temporal data.|
|
|
|[AveragePooling2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling2D)| Average pooling operation for spatial data.|
|
|
|[AveragePooling3D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling3D) |Average pooling operation for 3D data (spatial or spatio-temporal).|
|
|
|[BatchNormalization](https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization)| Layer that normalizes its inputs.|
|
|
|[Conv1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv1D)| 1D convolution layer (e.g. temporal convolution).|
|
|
|[Conv2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D) |2D convolution layer (e.g. spatial convolution over images).|
|
|
|[Conv3D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv3D)| 3D convolution layer (e.g. spatial convolution over volumes).|
|
|
|[Dense](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense)| Just your regular densely-connected NN layer.|
|
|
|[Dropout](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout) |Applies Dropout to the input.|
|
|
|[Flatten](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten) |Flattens the input. Does not affect the batch size.|
|
|
|[MaxPooling1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPooling1D)| Max pooling operation for 1D temporal data.|
|
|
|[MaxPooling2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPooling2D) |Max pooling operation for 2D spatial data.|
|
|
|[MaxPooling3D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPooling3D) |Max pooling operation for 3D data (spatial or spatio-temporal).|
|
|
|[SpatialDropout1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/SpatialDropout1D) |Spatial 1D version of Dropout.|
|
|
|[SpatialDropout2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/SpatialDropout2D) |Spatial 2D version of Dropout.|
|
|
|[SpatialDropout3D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/SpatialDropout3D) |Spatial 3D version of Dropout.|
|
|
|[ZeroPadding1D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/ZeroPadding1D) |Zero-padding layer for 1D input (e.g. temporal sequence).|
|
|
|[ZeroPadding2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/ZeroPadding2D) |Zero-padding layer for 2D input (e.g. picture).|
|
|
|[ZeroPadding3D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/ZeroPadding3D) |Zero-padding layer for 3D data (spatial or spatio-temporal).|
|
|
|
|
|
|
Preprocessing layers
|
|
Reduced list with the most relevant preprocessing layers
|
|
|
|
CenterCrop A preprocessing layer which crops images.
|
|
RandomContrast A preprocessing layer which randomly adjusts contrast during training.
|
|
RandomCrop A preprocessing layer which randomly crops images during training.
|
|
RandomFlip A preprocessing layer which randomly flips images during training.
|
|
RandomHeight A preprocessing layer which randomly varies image height during training.
|
|
RandomRotation A preprocessing layer which randomly rotates images during training.
|
|
RandomTranslation A preprocessing layer which randomly translates images during training.
|
|
RandomWidth A preprocessing layer which randomly varies image width during training.
|
|
RandomZoom A preprocessing layer which randomly zooms images during training.
|
|
Rescaling A preprocessing layer which rescales input values to a new range.
|
|
Resizing A preprocessing layer which resizes images.
|
|
|
|
|
|
Activation functions
|
|
Reduced list with the most relevant activation functions
|
|
|
|
hard_sigmoid(...) Hard sigmoid activation function.
|
|
relu(...) Applies the rectified linear unit activation function.
|
|
sigmoid(...) Sigmoid activation function, sigmoid(x) = 1 / (1 + exp(-x)).
|
|
softmax(...) Softmax converts a vector of values to a probability distribution.
|
|
softplus(...) Softplus activation function, softplus(x) = log(exp(x) + 1).
|
|
softsign(...) Softsign activation function, softsign(x) = x / (abs(x) + 1).
|
|
tanh(...) Hyperbolic tangent activation function.
|
|
|
|
|
|
Loss-functions
|
|
Reduced list with the most relevant loss functions
|
|
|
|
BinaryCrossentropy Computes the cross-entropy loss between true labels and predicted labels.
|
|
CategoricalCrossentropy Computes the crossentropy loss between the labels and predictions.
|
|
KLDivergence Computes Kullback-Leibler divergence loss between y_true and y_pred.
|
|
MeanAbsoluteError Computes the mean of absolute difference between labels and predictions.
|
|
MeanSquaredError Computes the mean of squares of errors between labels and predictions.
|
|
Poisson Computes the Poisson loss between y_true and y_pred.
|
|
SparseCategoricalCrossentropy Computes the crossentropy loss between the labels and predictions.
|
|
|
|
|
|
Optimizer
|
|
Reduced list with the most relevant optimizer
|
|
|
|
Adagrad Optimizer that implements the Adagrad algorithm.
|
|
Adam Optimizer that implements the Adam algorithm.
|
|
RMSprop Optimizer that implements the RMSprop algorithm.
|
|
SGD Gradient descent (with momentum) optimizer.
|
|
|
|
|
|
Metrics
|
|
A very reduced list with the most relevant metrics
|
|
|
|
Accuracy Calculates how often predictions equal labels.
|
|
BinaryAccuracy Calculates how often predictions match binary labels.
|
|
BinaryCrossentropy Computes the crossentropy metric between the labels and predictions.
|
|
CategoricalAccuracy Calculates how often predictions match one-hot labels.
|
|
CategoricalCrossentropy Computes the crossentropy metric between the labels and predictions.
|
|
KLDivergence Computes Kullback-Leibler divergence metric between y_true and y_pred.
|
|
Mean Computes the (weighted) mean of the given values.
|
|
MeanAbsoluteError Computes the mean absolute error between the labels and predictions.
|
|
MeanSquaredError Computes the mean squared error between y_true and y_pred.
|
|
Poisson Computes the Poisson metric between y_true and y_pred.
|
|
Precision Computes the precision of the predictions with respect to the labels.
|
|
RootMeanSquaredError Computes root mean squared error metric between y_true and y_pred.
|
|
SparseCategoricalAccuracy Calculates how often predictions match integer labels.
|
|
SparseCategoricalCrossentropy Computes the crossentropy metric between the labels and predictions.
|
|
SparseTopKCategoricalAccuracy Computes how often integer targets are in the top K predictions.
|
|
Sum Computes the (weighted) sum of the given values.
|
|
TopKCategoricalAccuracy Computes how often targets are in the top K predictions.
|
|
|
|
|
|
|
|
```python
|
|
```
|