pytutorial/python_basics/basic_math_operations/README.md
David Rotermund 9a79946beb
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-06 23:18:39 +01:00

7.5 KiB
Raw Blame History

Basic math operations

{:.no_toc}

* TOC {:toc}

Questions to David Rotermund

Number is Python

In Python everything is a class. Numbers are classes as well.

Integer

a_number = 0
print(type(a_number)) # -> <class 'int'>

FLOATing point number

a_second_number = 3.33
print(type(a_second_number)) # -> <class 'float'>

Conversion (i.e. casts) between types

a_second_number = 3.33
a_second_number = int(a_second_number)
print(type(a_second_number)) # -> <class 'int'>
Examples
float(x=0.0)
bin(x)
bool(x=False)
bytes(source=b'')
complex(real=0, imag=0)
hex(x)
int(x=0)
str(object='')

Basic math operations

Order of operations:

  1. Parentheses
  2. Exponents
  3. Multiplication/Division
  4. Addition/Subtraction
Operator Description
x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y
x // y floored quotient of x and y
x % y remainder of x / y
-x x negated
+x x unchanged
Operator Description
abs(x) absolute value or magnitude of x
int(x) x converted to integer
float(x) x converted to floating point
complex(re, im) a complex number with real part re, imaginary part im. im defaults to zero.
c.conjugate() conjugate of the complex number c
divmod(x, y) the pair (x // y, x % y)
pow(x, y) x to the power y
x ** y x to the power y

"True division"

print(5 / 2) # -> 2.5
print(6 / 2) # -> 3.0

“Floor division”

print(5 // 2) # -> 2
print(6 // 2) # -> 3

Inplace Operation

Inplace Operation Short for
a += b a = a + b
a &= b a = a & b
a //= b a = a // b
a <<= b a = a << b
a %= b a = a % b
a *= b a = a * b
a @= b a = a @ b
a |= b a = a | b
a **= b a = a ** b
a >>= b a = a >> b
a -= b a = a - b
a /= b a = a / b
a ^= b a = a ^ b

Boolean Operations — and, or, not

Operation Result
x or y if x is false, then y, else x
x and y if x is false, then x, else y
not x if x is false, then True, else False

Comparisons

Operation Meaning
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal
is object identity
is not negated object identity

Bitwise Operations on Integer Types

Operation Result
x | y bitwise or of x and y
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y
x << n x shifted left by n bits
x >> n x shifted right by n bits
~x the bits of x inverted

More math operations (math lib)

You need to include the math lib for that! (Only once per .py file and in the beginning of the file)

However, don't get used to it. As a data scientist you will not use it. You will use Numpy.

import math
print(math.cos(math.pi))

Examples

Number-theoretic and representation functions
math.ceil(x)
math.comb(n, k)
math.fabs(x)
math.factorial(n)
math.floor(x)
math.fmod(x, y)
math.fsum(iterable)
math.isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
math.isfinite(x)
math.isinf(x)
math.isnan(x)
math.perm(n, k=None)
math.prod(iterable, *, start=1)
math.trunc(x)
Constants
math.pi
math.e
math.inf
math.nan
Power and logarithmic functions
math.cbrt(x)
math.exp(x)
math.exp2(x)
math.expm1(x)
math.log(x[,base])
math.log1p(x)
math.log2(x)
math.log10(x)
math.pow(x, y)
math.sqrt(x)
Trigonometric functions
math.acos(x)
math.asin(x)
math.atan(x)
math.atan2(y, x)
math.cos(x)
math.sin(x)
math.tan(x)
math.dist(p, q)
Angular conversion
math.degrees(x)
math.radians(x)
Hyperbolic functions
math.acosh(x)
math.asinh(x)
math.atanh(x)
math.cosh(x)
math.sinh(x)
math.tanh(x)

Behind the curtain

{: .topic-optional} This is an optional topic!

If you do a + b, in reality this is internally replaced by add(a, b).

These are the "Mapping Operators to Functions":

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test obj in seq contains(seq, obj)
Division a / b truediv(a, b)
Division a // b floordiv(a, b)
Bitwise And a & b and_(a, b)
Bitwise Exclusive Or a ^ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or a | b or_(a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is_(a, b)
Identity a is not b is_not(a, b)
Indexed Assignment obj[k] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[k] getitem(obj, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Matrix Multiplication a @ b matmul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Positive + a pos(a)
Right Shift a >> b rshift(a, b)
Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values)
Slice Deletion del seq[i:j] delitem(seq, slice(i, j))
Slicing seq[i:j] getitem(seq, slice(i, j))
String Formatting s % obj mod(s, obj)
Subtraction a - b sub(a, b)
Truth Test obj truth(obj)
Ordering a < b lt(a, b)
Ordering a <= b le(a, b)
Equality a == b eq(a, b)
Difference a != b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a > b gt(a, b)

In-place Operators

a += b a = iadd(a, b)
a &= b a = iand(a, b)
a += b for a and b sequences a = iconcat(a, b)
a //= b a = ifloordiv(a, b)
a <<= b a = ilshift(a, b)
a %= b a = imod(a, b)
a *= b a = imul(a, b)
a @= b a = imatmul(a, b)
a |= b a = ior(a, b)
a **= b a = ipow(a, b)
a >>= b a = irshift(a, b)
a -= b a = isub(a, b)
a /= b a = itruediv(a, b)
a ^= b a = ixor(a, b)