cfc0fb034f
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
389 lines
10 KiB
Markdown
389 lines
10 KiB
Markdown
# Spectral Coherence
|
|
{:.no_toc}
|
|
|
|
<nav markdown="1" class="toc-class">
|
|
* TOC
|
|
{:toc}
|
|
</nav>
|
|
|
|
## Top
|
|
|
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
|
|
|
## Test data
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
f_base: float = 50
|
|
f_delta: float = 50
|
|
|
|
rng = np.random.default_rng(1)
|
|
n: int = 10000
|
|
dt: float = 1.0 / 1000.0
|
|
amplitude: float = 2.0
|
|
t: np.ndarray = np.arange(0, n) * dt
|
|
y: np.ndarray = np.sin(2.0 * np.pi * f_delta * t) + amplitude * rng.random(t.shape)
|
|
|
|
|
|
np.savez("testdata.npz", y=y, t=t)
|
|
|
|
plt.plot(t, y)
|
|
plt.xlabel("Time [s]")
|
|
plt.xlim(0, 0.5)
|
|
plt.show()
|
|
|
|
```
|
|
![image0.png](image0.png)
|
|
|
|
Let us look at wavelet power of the time series:
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pywt
|
|
|
|
|
|
# Calculate the wavelet scales we requested
|
|
def calculate_wavelet_scale(
|
|
number_of_frequences: int,
|
|
frequency_range_min: float,
|
|
frequency_range_max: float,
|
|
dt: float,
|
|
) -> np.ndarray:
|
|
s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2(
|
|
frequency_range_max / frequency_range_min
|
|
)
|
|
scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing)
|
|
frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale)
|
|
return 1.0 / (frequency_axis_request * dt)
|
|
|
|
|
|
def get_y_ticks(
|
|
reduction_to_ticks: int, frequency_axis: np.ndarray, round: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
output_ticks = np.arange(
|
|
0,
|
|
frequency_axis.shape[0],
|
|
int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)),
|
|
)
|
|
if round < 0:
|
|
output_freq = frequency_axis[output_ticks]
|
|
else:
|
|
output_freq = np.round(frequency_axis[output_ticks], round)
|
|
return output_ticks, output_freq
|
|
|
|
|
|
def get_x_ticks(
|
|
reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
time_axis = dt * np.arange(0, number_of_timesteps)
|
|
output_ticks = np.arange(
|
|
0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks))
|
|
)
|
|
if round < 0:
|
|
output_time_axis = time_axis[output_ticks]
|
|
else:
|
|
output_time_axis = np.round(time_axis[output_ticks], round)
|
|
return output_ticks, output_time_axis
|
|
|
|
|
|
def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray):
|
|
wave_scales = 1.0 / (frequency_axis * dt)
|
|
cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64)
|
|
return cone_of_influence
|
|
|
|
|
|
def mask_cone_of_influence(
|
|
complex_spectrum: np.ndarray,
|
|
cone_of_influence: np.ndarray,
|
|
fill_value: float = np.NaN,
|
|
) -> np.ndarray:
|
|
assert complex_spectrum.shape[0] == cone_of_influence.shape[0]
|
|
|
|
for frequency_id in range(0, cone_of_influence.shape[0]):
|
|
# Front side
|
|
start_id: int = 0
|
|
end_id: int = int(
|
|
np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1]))
|
|
)
|
|
complex_spectrum[frequency_id, start_id:end_id] = fill_value
|
|
|
|
start_id = np.max(
|
|
(
|
|
complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1,
|
|
0,
|
|
)
|
|
)
|
|
end_id = complex_spectrum.shape[1]
|
|
complex_spectrum[frequency_id, start_id:end_id] = fill_value
|
|
|
|
return complex_spectrum
|
|
|
|
|
|
t = np.load("testdata.npz")["t"]
|
|
y = np.load("testdata.npz")["y"]
|
|
dt = t[1] - t[0]
|
|
|
|
# The wavelet we want to use
|
|
mother = pywt.ContinuousWavelet("cmor1.5-1.0")
|
|
|
|
# Parameters for the wavelet transform
|
|
number_of_frequences: int = 25 # frequency bands
|
|
frequency_range_min: float = 5 # Hz
|
|
frequency_range_max: float = 200 # Hz
|
|
|
|
wave_scales = calculate_wavelet_scale(
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
complex_spectrum, frequency_axis = pywt.cwt(
|
|
data=y, scales=wave_scales, wavelet=mother, sampling_period=dt
|
|
)
|
|
|
|
cone_of_influence = calculate_cone_of_influence(dt, frequency_axis)
|
|
|
|
complex_spectrum = mask_cone_of_influence(
|
|
complex_spectrum=complex_spectrum,
|
|
cone_of_influence=cone_of_influence,
|
|
fill_value=np.NaN,
|
|
)
|
|
|
|
plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto")
|
|
plt.colorbar()
|
|
|
|
y_ticks, y_labels = get_y_ticks(
|
|
reduction_to_ticks=10, frequency_axis=frequency_axis, round=1
|
|
)
|
|
|
|
x_ticks, x_labels = get_x_ticks(
|
|
reduction_to_ticks=10, dt=dt, number_of_timesteps=complex_spectrum.shape[1], round=2
|
|
)
|
|
|
|
plt.yticks(y_ticks, y_labels)
|
|
plt.xticks(x_ticks, x_labels)
|
|
|
|
plt.xlabel("Time [sec]")
|
|
plt.ylabel("Frequency [Hz]")
|
|
plt.show()
|
|
```
|
|
|
|
![image1.png](image1.png)
|
|
|
|
## Instantanious Spectral Coherence
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pywt
|
|
|
|
|
|
# Calculate the wavelet scales we requested
|
|
def calculate_wavelet_scale(
|
|
number_of_frequences: int,
|
|
frequency_range_min: float,
|
|
frequency_range_max: float,
|
|
dt: float,
|
|
) -> np.ndarray:
|
|
s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2(
|
|
frequency_range_max / frequency_range_min
|
|
)
|
|
scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing)
|
|
frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale)
|
|
return 1.0 / (frequency_axis_request * dt)
|
|
|
|
|
|
def get_y_ticks(
|
|
reduction_to_ticks: int, frequency_axis: np.ndarray, round: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
output_ticks = np.arange(
|
|
0,
|
|
frequency_axis.shape[0],
|
|
int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)),
|
|
)
|
|
if round < 0:
|
|
output_freq = frequency_axis[output_ticks]
|
|
else:
|
|
output_freq = np.round(frequency_axis[output_ticks], round)
|
|
return output_ticks, output_freq
|
|
|
|
|
|
def get_x_ticks(
|
|
reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
time_axis = dt * np.arange(0, number_of_timesteps)
|
|
output_ticks = np.arange(
|
|
0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks))
|
|
)
|
|
if round < 0:
|
|
output_time_axis = time_axis[output_ticks]
|
|
else:
|
|
output_time_axis = np.round(time_axis[output_ticks], round)
|
|
return output_ticks, output_time_axis
|
|
|
|
|
|
def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray):
|
|
wave_scales = 1.0 / (frequency_axis * dt)
|
|
cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64)
|
|
return cone_of_influence
|
|
|
|
|
|
def mask_cone_of_influence(
|
|
complex_spectrum: np.ndarray,
|
|
cone_of_influence: np.ndarray,
|
|
fill_value: float = np.NaN,
|
|
) -> np.ndarray:
|
|
assert complex_spectrum.shape[0] == cone_of_influence.shape[0]
|
|
|
|
for frequency_id in range(0, cone_of_influence.shape[0]):
|
|
# Front side
|
|
start_id: int = 0
|
|
end_id: int = int(
|
|
np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1]))
|
|
)
|
|
complex_spectrum[frequency_id, start_id:end_id] = fill_value
|
|
|
|
start_id = np.max(
|
|
(
|
|
complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1,
|
|
0,
|
|
)
|
|
)
|
|
end_id = complex_spectrum.shape[1]
|
|
complex_spectrum[frequency_id, start_id:end_id] = fill_value
|
|
|
|
return complex_spectrum
|
|
|
|
|
|
def calculate_wavelet_tf_complex_coeffs(
|
|
data: np.ndarray,
|
|
number_of_frequences: int = 25,
|
|
frequency_range_min: float = 15,
|
|
frequency_range_max: float = 200,
|
|
dt: float = 1.0 / 1000,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
|
|
assert data.ndim == 1
|
|
t: np.ndarray = np.arange(0, data.shape[0]) * dt
|
|
|
|
# The wavelet we want to use
|
|
mother = pywt.ContinuousWavelet("cmor1.5-1.0")
|
|
|
|
wave_scales = calculate_wavelet_scale(
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
complex_spectrum, frequency_axis = pywt.cwt(
|
|
data=data, scales=wave_scales, wavelet=mother, sampling_period=dt
|
|
)
|
|
|
|
return (complex_spectrum, frequency_axis, t)
|
|
|
|
|
|
# Parameters for the wavelet transform
|
|
number_of_frequences: int = 25 # frequency bands
|
|
frequency_range_min: float = 5 # Hz
|
|
frequency_range_max: float = 200 # Hz
|
|
dt: float = 1.0 / 1000.0
|
|
|
|
# I want more trials
|
|
f_base: float = 50
|
|
f_delta: float = 50
|
|
|
|
# Test data ->
|
|
rng = np.random.default_rng(1)
|
|
n_t: int = 10000
|
|
n_trials: int = 100
|
|
t: np.ndarray = np.arange(0, n_t) * dt
|
|
amplitude: float = 2.0
|
|
|
|
y_a: np.ndarray = np.sin(
|
|
2.0 * np.pi * f_delta * t[:, np.newaxis]
|
|
) + amplitude * rng.random((n_t, n_trials))
|
|
|
|
y_a -= y_a.mean(axis=0, keepdims=True)
|
|
y_a /= y_a.std(axis=0, keepdims=True)
|
|
# <- Test data
|
|
|
|
y_b: np.ndarray = y_a.copy()
|
|
|
|
|
|
for trial_id in range(0, n_trials):
|
|
wave_data_a, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
|
data=y_a[..., trial_id],
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
wave_data_b, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
|
data=y_b[..., trial_id],
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
cone_of_influence = calculate_cone_of_influence(dt, frequency_axis)
|
|
|
|
wave_data_a = mask_cone_of_influence(
|
|
complex_spectrum=wave_data_a,
|
|
cone_of_influence=cone_of_influence,
|
|
fill_value=np.NaN,
|
|
)
|
|
|
|
wave_data_b = mask_cone_of_influence(
|
|
complex_spectrum=wave_data_b,
|
|
cone_of_influence=cone_of_influence,
|
|
fill_value=np.NaN,
|
|
)
|
|
|
|
if trial_id == 0:
|
|
calculation = wave_data_a * wave_data_b
|
|
norm_data_a = np.abs(wave_data_a) ** 2
|
|
norm_data_b = np.abs(wave_data_b) ** 2
|
|
|
|
else:
|
|
calculation += wave_data_a * wave_data_b
|
|
norm_data_a += np.abs(wave_data_a) ** 2
|
|
norm_data_b += np.abs(wave_data_b) ** 2
|
|
|
|
calculation /= float(n_trials)
|
|
norm_data_a /= float(n_trials)
|
|
norm_data_b /= float(n_trials)
|
|
|
|
coherence = np.abs(calculation) ** 2 / (norm_data_a * norm_data_b)
|
|
|
|
y_reduction_to_ticks: int = 10
|
|
x_reduction_to_ticks: int = 10
|
|
y_round: int = 1
|
|
x_round: int = 1
|
|
|
|
freq_ticks, freq_values = get_y_ticks(
|
|
reduction_to_ticks=y_reduction_to_ticks,
|
|
frequency_axis=frequency_axis,
|
|
round=y_round,
|
|
)
|
|
|
|
time_ticks, time_values = get_x_ticks(
|
|
reduction_to_ticks=x_reduction_to_ticks,
|
|
dt=dt,
|
|
number_of_timesteps=t.shape[0],
|
|
round=x_round,
|
|
)
|
|
|
|
plt.plot(frequency_axis, np.nanmean(coherence, axis=-1))
|
|
plt.ylabel("Spectral Coherence")
|
|
plt.xlabel("Frequency [Hz]")
|
|
plt.show()
|
|
```
|
|
|
|
![image2.png](image2.png)
|