d18ed4d586
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
478 lines
15 KiB
Markdown
478 lines
15 KiB
Markdown
# Overview
|
|
{:.no_toc}
|
|
|
|
<nav markdown="1" class="toc-class">
|
|
* TOC
|
|
{:toc}
|
|
</nav>
|
|
|
|
## The goal
|
|
|
|
[scikit-learn](https://scikit-learn.org/stable/index.html) is a machine learning tool kit for data analysis.
|
|
|
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
|
|
|
|
|
```shell
|
|
pip install scikit-learn
|
|
```
|
|
|
|
> * Simple and efficient tools for predictive data analysis
|
|
> * Accessible to everybody, and reusable in various contexts
|
|
> * Built on NumPy, SciPy, and matplotlib
|
|
|
|
|
|
**I will keep it short and I will mark the most relevant tools in bold**
|
|
|
|
|
|
## [sklearn.base: Base classes and utility functions](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.base)
|
|
|
|
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.base)
|
|
|
|
|
|
## [sklearn.calibration: Probability Calibration](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.calibration)
|
|
|
|
|
|
calibration.CalibratedClassifierCV([...])
|
|
Probability calibration with isotonic regression or logistic regression.
|
|
|
|
calibration.calibration_curve(y_true, y_prob, *)
|
|
Compute true and predicted probabilities for a calibration curve.
|
|
|
|
## [sklearn.cluster: Clustering](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster)
|
|
|
|
see more [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster)
|
|
|
|
cluster.AffinityPropagation(*[, damping, ...])
|
|
Perform Affinity Propagation Clustering of data.
|
|
|
|
cluster.AgglomerativeClustering([...])
|
|
Agglomerative Clustering.
|
|
|
|
cluster.Birch(*[, threshold, ...])
|
|
Implements the BIRCH clustering algorithm.
|
|
|
|
cluster.DBSCAN([eps, min_samples, metric, ...])
|
|
Perform DBSCAN clustering from vector array or distance matrix.
|
|
|
|
cluster.HDBSCAN([min_cluster_size, ...])
|
|
Cluster data using hierarchical density-based clustering.
|
|
|
|
cluster.FeatureAgglomeration([n_clusters, ...])
|
|
Agglomerate features.
|
|
|
|
**cluster.KMeans([n_clusters, init, n_init, ...])**
|
|
**K-Means clustering.**
|
|
|
|
cluster.BisectingKMeans([n_clusters, init, ...])
|
|
Bisecting K-Means clustering.
|
|
|
|
**cluster.MiniBatchKMeans([n_clusters, init, ...])**
|
|
**Mini-Batch K-Means clustering.**
|
|
|
|
cluster.MeanShift(*[, bandwidth, seeds, ...])
|
|
Mean shift clustering using a flat kernel.
|
|
|
|
cluster.OPTICS(*[, min_samples, max_eps, ...])
|
|
Estimate clustering structure from vector array.
|
|
|
|
cluster.SpectralClustering([n_clusters, ...])
|
|
Apply clustering to a projection of the normalized Laplacian.
|
|
|
|
cluster.SpectralBiclustering([n_clusters, ...])
|
|
Spectral biclustering (Kluger, 2003).
|
|
|
|
cluster.SpectralCoclustering([n_clusters, ...])
|
|
Spectral Co-Clustering algorithm (Dhillon, 2001).
|
|
|
|
|
|
## [sklearn.compose: Composite Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.compose)
|
|
|
|
compose.ColumnTransformer(transformers, *[, ...])
|
|
Applies transformers to columns of an array or pandas DataFrame.
|
|
|
|
compose.TransformedTargetRegressor([...])
|
|
Meta-estimator to regress on a transformed target.
|
|
|
|
compose.make_column_transformer(*transformers)
|
|
Construct a ColumnTransformer from the given transformers.
|
|
|
|
compose.make_column_selector([pattern, ...])
|
|
Create a callable to select columns to be used with ColumnTransformer.
|
|
|
|
## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance)
|
|
|
|
covariance.EmpiricalCovariance(*[, ...])
|
|
Maximum likelihood covariance estimator.
|
|
|
|
covariance.EllipticEnvelope(*[, ...])
|
|
An object for detecting outliers in a Gaussian distributed dataset.
|
|
|
|
covariance.GraphicalLasso([alpha, mode, ...])
|
|
Sparse inverse covariance estimation with an l1-penalized estimator.
|
|
|
|
covariance.GraphicalLassoCV(*[, alphas, ...])
|
|
Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
|
|
|
|
covariance.LedoitWolf(*[, store_precision, ...])
|
|
LedoitWolf Estimator.
|
|
|
|
covariance.MinCovDet(*[, store_precision, ...])
|
|
Minimum Covariance Determinant (MCD): robust estimator of covariance.
|
|
|
|
covariance.OAS(*[, store_precision, ...])
|
|
Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1].
|
|
|
|
covariance.ShrunkCovariance(*[, ...])
|
|
Covariance estimator with shrinkage.
|
|
|
|
covariance.empirical_covariance(X, *[, ...])
|
|
Compute the Maximum likelihood covariance estimator.
|
|
|
|
covariance.graphical_lasso(emp_cov, alpha, *)
|
|
L1-penalized covariance estimator.
|
|
|
|
covariance.ledoit_wolf(X, *[, ...])
|
|
Estimate the shrunk Ledoit-Wolf covariance matrix.
|
|
|
|
covariance.ledoit_wolf_shrinkage(X[, ...])
|
|
Estimate the shrunk Ledoit-Wolf covariance matrix.
|
|
|
|
covariance.oas(X, *[, assume_centered])
|
|
Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1].
|
|
|
|
covariance.shrunk_covariance(emp_cov[, ...])
|
|
Calculate a covariance matrix shrunk on the diagonal.
|
|
|
|
|
|
## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition)
|
|
|
|
cross_decomposition.CCA([n_components, ...])
|
|
Canonical Correlation Analysis, also known as "Mode B" PLS.
|
|
|
|
cross_decomposition.PLSCanonical([...])
|
|
Partial Least Squares transformer and regressor.
|
|
|
|
cross_decomposition.PLSRegression([...])
|
|
PLS regression.
|
|
|
|
cross_decomposition.PLSSVD([n_components, ...])
|
|
Partial Least Square SVD.
|
|
|
|
|
|
## [sklearn.datasets: Datasets](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets)
|
|
|
|
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets)
|
|
|
|
|
|
## [sklearn.decomposition: Matrix Decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition)
|
|
|
|
|
|
decomposition.DictionaryLearning([...])
|
|
Dictionary learning.
|
|
|
|
decomposition.FactorAnalysis([n_components, ...])
|
|
Factor Analysis (FA).
|
|
|
|
**decomposition.FastICA([n_components, ...])**
|
|
**FastICA: a fast algorithm for Independent Component Analysis.**
|
|
|
|
decomposition.IncrementalPCA([n_components, ...])
|
|
Incremental principal components analysis (IPCA).
|
|
|
|
decomposition.KernelPCA([n_components, ...])
|
|
Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].
|
|
|
|
decomposition.LatentDirichletAllocation([...])
|
|
Latent Dirichlet Allocation with online variational Bayes algorithm.
|
|
|
|
decomposition.MiniBatchDictionaryLearning([...])
|
|
Mini-batch dictionary learning.
|
|
|
|
decomposition.MiniBatchSparsePCA([...])
|
|
Mini-batch Sparse Principal Components Analysis.
|
|
|
|
decomposition.NMF([n_components, init, ...])
|
|
Non-Negative Matrix Factorization (NMF).
|
|
|
|
decomposition.MiniBatchNMF([n_components, ...])
|
|
Mini-Batch Non-Negative Matrix Factorization (NMF).
|
|
|
|
**decomposition.PCA([n_components, copy, ...])**
|
|
**Principal component analysis (PCA).**
|
|
|
|
decomposition.SparsePCA([n_components, ...])
|
|
Sparse Principal Components Analysis (SparsePCA).
|
|
|
|
decomposition.SparseCoder(dictionary, *[, ...])
|
|
Sparse coding.
|
|
|
|
decomposition.TruncatedSVD([n_components, ...])
|
|
Dimensionality reduction using truncated SVD (aka LSA).
|
|
|
|
decomposition.dict_learning(X, n_components, ...)
|
|
Solve a dictionary learning matrix factorization problem.
|
|
|
|
decomposition.dict_learning_online(X[, ...])
|
|
Solve a dictionary learning matrix factorization problem online.
|
|
|
|
decomposition.fastica(X[, n_components, ...])
|
|
Perform Fast Independent Component Analysis.
|
|
|
|
decomposition.non_negative_factorization(X)
|
|
Compute Non-negative Matrix Factorization (NMF).
|
|
|
|
decomposition.sparse_encode(X, dictionary, *)
|
|
Sparse coding.
|
|
|
|
## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis)
|
|
|
|
discriminant_analysis.LinearDiscriminantAnalysis([...])
|
|
Linear Discriminant Analysis.
|
|
|
|
discriminant_analysis.QuadraticDiscriminantAnalysis(*)
|
|
Quadratic Discriminant Analysis.
|
|
|
|
|
|
## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy)
|
|
|
|
dummy.DummyClassifier(*[, strategy, ...])
|
|
DummyClassifier makes predictions that ignore the input features.
|
|
|
|
dummy.DummyRegressor(*[, strategy, ...])
|
|
Regressor that makes predictions using simple rules.
|
|
|
|
## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)
|
|
|
|
ensemble.AdaBoostClassifier([estimator, ...])
|
|
An AdaBoost classifier.
|
|
|
|
ensemble.AdaBoostRegressor([estimator, ...])
|
|
An AdaBoost regressor.
|
|
|
|
ensemble.BaggingClassifier([estimator, ...])
|
|
A Bagging classifier.
|
|
|
|
ensemble.BaggingRegressor([estimator, ...])
|
|
A Bagging regressor.
|
|
|
|
ensemble.ExtraTreesClassifier([...])
|
|
An extra-trees classifier.
|
|
|
|
ensemble.ExtraTreesRegressor([n_estimators, ...])
|
|
An extra-trees regressor.
|
|
|
|
ensemble.GradientBoostingClassifier(*[, ...])
|
|
Gradient Boosting for classification.
|
|
|
|
ensemble.GradientBoostingRegressor(*[, ...])
|
|
Gradient Boosting for regression.
|
|
|
|
ensemble.IsolationForest(*[, n_estimators, ...])
|
|
Isolation Forest Algorithm.
|
|
|
|
ensemble.RandomForestClassifier([...])
|
|
A random forest classifier.
|
|
|
|
ensemble.RandomForestRegressor([...])
|
|
A random forest regressor.
|
|
|
|
ensemble.RandomTreesEmbedding([...])
|
|
An ensemble of totally random trees.
|
|
|
|
ensemble.StackingClassifier(estimators[, ...])
|
|
Stack of estimators with a final classifier.
|
|
|
|
ensemble.StackingRegressor(estimators[, ...])
|
|
Stack of estimators with a final regressor.
|
|
|
|
ensemble.VotingClassifier(estimators, *[, ...])
|
|
Soft Voting/Majority Rule classifier for unfitted estimators.
|
|
|
|
ensemble.VotingRegressor(estimators, *[, ...])
|
|
Prediction voting regressor for unfitted estimators.
|
|
|
|
ensemble.HistGradientBoostingRegressor([...])
|
|
Histogram-based Gradient Boosting Regression Tree.
|
|
|
|
ensemble.HistGradientBoostingClassifier([...])
|
|
Histogram-based Gradient Boosting Classification Tree.
|
|
|
|
## [sklearn.exceptions: Exceptions and warnings](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions)
|
|
|
|
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions)
|
|
|
|
## [sklearn.experimental: Experimental](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.experimental)
|
|
|
|
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.experimental)
|
|
|
|
|
|
## [sklearn.preprocessing: Preprocessing and Normalization](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing)
|
|
|
|
preprocessing.Binarizer(*[, threshold, copy])
|
|
Binarize data (set feature values to 0 or 1) according to a threshold.
|
|
|
|
preprocessing.FunctionTransformer([func, ...])
|
|
Constructs a transformer from an arbitrary callable.
|
|
|
|
preprocessing.KBinsDiscretizer([n_bins, ...])
|
|
Bin continuous data into intervals.
|
|
|
|
preprocessing.KernelCenterer()
|
|
Center an arbitrary kernel matrix
|
|
|
|
preprocessing.LabelBinarizer(*[, neg_label, ...])
|
|
Binarize labels in a one-vs-all fashion.
|
|
|
|
preprocessing.LabelEncoder()
|
|
Encode target labels with value between 0 and n_classes-1.
|
|
|
|
preprocessing.MultiLabelBinarizer(*[, ...])
|
|
Transform between iterable of iterables and a multilabel format.
|
|
|
|
preprocessing.MaxAbsScaler(*[, copy])
|
|
Scale each feature by its maximum absolute value.
|
|
|
|
preprocessing.MinMaxScaler([feature_range, ...])
|
|
Transform features by scaling each feature to a given range.
|
|
|
|
preprocessing.Normalizer([norm, copy])
|
|
Normalize samples individually to unit norm.
|
|
|
|
preprocessing.OneHotEncoder(*[, categories, ...])
|
|
Encode categorical features as a one-hot numeric array.
|
|
|
|
preprocessing.OrdinalEncoder(*[, ...])
|
|
Encode categorical features as an integer array.
|
|
|
|
preprocessing.PolynomialFeatures([degree, ...])
|
|
Generate polynomial and interaction features.
|
|
|
|
preprocessing.PowerTransformer([method, ...])
|
|
Apply a power transform featurewise to make data more Gaussian-like.
|
|
|
|
preprocessing.QuantileTransformer(*[, ...])
|
|
Transform features using quantiles information.
|
|
|
|
preprocessing.RobustScaler(*[, ...])
|
|
Scale features using statistics that are robust to outliers.
|
|
|
|
preprocessing.SplineTransformer([n_knots, ...])
|
|
Generate univariate B-spline bases for features.
|
|
|
|
preprocessing.StandardScaler(*[, copy, ...])
|
|
Standardize features by removing the mean and scaling to unit variance.
|
|
|
|
preprocessing.TargetEncoder([categories, ...])
|
|
Target Encoder for regression and classification targets.
|
|
|
|
preprocessing.add_dummy_feature(X[, value])
|
|
Augment dataset with an additional dummy feature.
|
|
|
|
preprocessing.binarize(X, *[, threshold, copy])
|
|
Boolean thresholding of array-like or scipy.sparse matrix.
|
|
|
|
preprocessing.label_binarize(y, *, classes)
|
|
Binarize labels in a one-vs-all fashion.
|
|
|
|
preprocessing.maxabs_scale(X, *[, axis, copy])
|
|
Scale each feature to the [-1, 1] range without breaking the sparsity.
|
|
|
|
preprocessing.minmax_scale(X[, ...])
|
|
Transform features by scaling each feature to a given range.
|
|
|
|
preprocessing.normalize(X[, norm, axis, ...])
|
|
Scale input vectors individually to unit norm (vector length).
|
|
|
|
preprocessing.quantile_transform(X, *[, ...])
|
|
Transform features using quantiles information.
|
|
|
|
preprocessing.robust_scale(X, *[, axis, ...])
|
|
Standardize a dataset along any axis.
|
|
|
|
preprocessing.scale(X, *[, axis, with_mean, ...])
|
|
Standardize a dataset along any axis.
|
|
|
|
preprocessing.power_transform(X[, method, ...])
|
|
Parametric, monotonic transformation to make data more Gaussian-like.
|
|
|
|
|
|
|
|
## [sklearn.random_projection: Random projection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.random_projection)
|
|
|
|
random_projection.GaussianRandomProjection([...])
|
|
Reduce dimensionality through Gaussian random projection.
|
|
|
|
random_projection.SparseRandomProjection([...])
|
|
Reduce dimensionality through sparse random projection.
|
|
|
|
random_projection.johnson_lindenstrauss_min_dim(...)
|
|
Find a 'safe' number of components to randomly project to.
|
|
|
|
## [sklearn.semi_supervised: Semi-Supervised Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.semi_supervised)
|
|
|
|
semi_supervised.LabelPropagation([kernel, ...])
|
|
Label Propagation classifier.
|
|
|
|
semi_supervised.LabelSpreading([kernel, ...])
|
|
LabelSpreading model for semi-supervised learning.
|
|
|
|
semi_supervised.SelfTrainingClassifier(...)
|
|
Self-training classifier.
|
|
|
|
|
|
|
|
## [sklearn.svm: Support Vector Machines](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm)
|
|
|
|
svm.LinearSVC([penalty, loss, dual, tol, C, ...])
|
|
Linear Support Vector Classification.
|
|
|
|
svm.LinearSVR(*[, epsilon, tol, C, loss, ...])
|
|
Linear Support Vector Regression.
|
|
|
|
svm.NuSVC(*[, nu, kernel, degree, gamma, ...])
|
|
Nu-Support Vector Classification.
|
|
|
|
svm.NuSVR(*[, nu, C, kernel, degree, gamma, ...])
|
|
Nu Support Vector Regression.
|
|
|
|
svm.OneClassSVM(*[, kernel, degree, gamma, ...])
|
|
Unsupervised Outlier Detection.
|
|
|
|
svm.SVC(*[, C, kernel, degree, gamma, ...])
|
|
C-Support Vector Classification.
|
|
|
|
svm.SVR(*[, kernel, degree, gamma, coef0, ...])
|
|
Epsilon-Support Vector Regression.
|
|
|
|
svm.l1_min_c(X, y, *[, loss, fit_intercept, ...])
|
|
Return the lowest bound for C.
|
|
|
|
|
|
|
|
## [sklearn.tree: Decision Trees](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree)
|
|
|
|
tree.DecisionTreeClassifier(*[, criterion, ...])
|
|
A decision tree classifier.
|
|
|
|
tree.DecisionTreeRegressor(*[, criterion, ...])
|
|
A decision tree regressor.
|
|
|
|
tree.ExtraTreeClassifier(*[, criterion, ...])
|
|
An extremely randomized tree classifier.
|
|
|
|
tree.ExtraTreeRegressor(*[, criterion, ...])
|
|
An extremely randomized tree regressor.
|
|
|
|
tree.export_graphviz(decision_tree[, ...])
|
|
Export a decision tree in DOT format.
|
|
|
|
tree.export_text(decision_tree, *[, ...])
|
|
Build a text report showing the rules of a decision tree.
|
|
|
|
tree.plot_tree(decision_tree, *[, ...])
|
|
Plot a decision tree.
|
|
|
|
## [sklearn.utils: Utilities](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.utils)
|
|
|
|
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.utils)
|