2022-04-30 02:03:34 +02:00
|
|
|
|
# pytorch-sbs
|
|
|
|
|
SbS Extension for PyTorch
|
2022-04-30 02:14:02 +02:00
|
|
|
|
|
|
|
|
|
|
2022-04-30 13:45:04 +02:00
|
|
|
|
# Based on these scientific papers
|
2022-04-30 02:14:02 +02:00
|
|
|
|
|
2022-04-30 02:16:43 +02:00
|
|
|
|
**Back-Propagation Learning in Deep Spike-By-Spike Networks**
|
|
|
|
|
David Rotermund and Klaus R. Pawelzik
|
|
|
|
|
Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055
|
|
|
|
|
https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full
|
2022-04-30 02:14:24 +02:00
|
|
|
|
|
2022-04-30 02:16:43 +02:00
|
|
|
|
**Efficient Computation Based on Stochastic Spikes**
|
|
|
|
|
Udo Ernst, David Rotermund, and Klaus Pawelzik
|
2022-04-30 02:17:18 +02:00
|
|
|
|
Neural Computation (2007) 19 (5): 1313–1343. https://doi.org/10.1162/neco.2007.19.5.1313
|
2022-04-30 02:16:43 +02:00
|
|
|
|
https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes
|
2022-04-30 13:45:04 +02:00
|
|
|
|
|
|
|
|
|
# Python
|
|
|
|
|
|
|
|
|
|
It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions.
|
|
|
|
|
|
|
|
|
|
# C++
|
|
|
|
|
|
|
|
|
|
It works without compiling the C++ modules. However it is 10x slower.
|
|
|
|
|
You need to modify the Makefile in the C++ directory to your Python installation.
|
|
|
|
|
In addition yoir Python installation needs the PyBind11 package installed. You might want to perform a
|
|
|
|
|
pip install pybind11
|
|
|
|
|
The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile.
|
2022-04-30 13:46:21 +02:00
|
|
|
|
The SbS.py autodetectes if the required C++ .so modules are in the same directory as the SbS.py file.
|
|
|
|
|
|
2022-04-30 14:51:02 +02:00
|
|
|
|
# Parameters in JSON file
|
2022-04-30 13:45:04 +02:00
|
|
|
|
|
2022-04-30 14:51:02 +02:00
|
|
|
|
## network_structure (required!)
|
|
|
|
|
Parameters of the network. The details about its layers and the number of output neurons.
|
|
|
|
|
|
|
|
|
|
number_of_output_neurons: int = field(default=0)
|
|
|
|
|
forward_neuron_numbers: list[list[int]] = field(default_factory=list)
|
|
|
|
|
is_pooling_layer: list[bool] = field(default_factory=list)
|
|
|
|
|
|
|
|
|
|
forward_kernel_size: list[list[int]] = field(default_factory=list)
|
|
|
|
|
strides: list[list[int]] = field(default_factory=list)
|
|
|
|
|
dilation: list[list[int]] = field(default_factory=list)
|
|
|
|
|
padding: list[list[int]] = field(default_factory=list)
|
|
|
|
|
|
|
|
|
|
w_trainable: list[bool] = field(default_factory=list)
|
|
|
|
|
eps_xy_trainable: list[bool] = field(default_factory=list)
|
|
|
|
|
eps_xy_mean: list[bool] = field(default_factory=list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## learning_parameters
|
|
|
|
|
Parameter required for training
|
|
|
|
|
|
|
|
|
|
learning_active: bool = field(default=True)
|
|
|
|
|
|
|
|
|
|
loss_coeffs_mse: float = field(default=0.5)
|
|
|
|
|
loss_coeffs_kldiv: float = field(default=1.0)
|
|
|
|
|
|
|
|
|
|
optimizer_name: str = field(default="Adam")
|
|
|
|
|
learning_rate_gamma_w: float = field(default=-1.0)
|
|
|
|
|
learning_rate_gamma_eps_xy: float = field(default=-1.0)
|
|
|
|
|
learning_rate_threshold_w: float = field(default=0.00001)
|
|
|
|
|
learning_rate_threshold_eps_xy: float = field(default=0.00001)
|
|
|
|
|
|
|
|
|
|
lr_schedule_name: str = field(default="ReduceLROnPlateau")
|
|
|
|
|
lr_scheduler_factor_w: float = field(default=0.75)
|
|
|
|
|
lr_scheduler_patience_w: int = field(default=-1)
|
|
|
|
|
|
|
|
|
|
lr_scheduler_factor_eps_xy: float = field(default=0.75)
|
|
|
|
|
lr_scheduler_patience_eps_xy: int = field(default=-1)
|
|
|
|
|
|
|
|
|
|
number_of_batches_for_one_update: int = field(default=1)
|
|
|
|
|
overload_path: str = field(default="./Previous")
|
|
|
|
|
|
|
|
|
|
weight_noise_amplitude: float = field(default=0.01)
|
|
|
|
|
eps_xy_intitial: float = field(default=0.1)
|
|
|
|
|
|
|
|
|
|
test_every_x_learning_steps: int = field(default=50)
|
|
|
|
|
test_during_learning: bool = field(default=True)
|
|
|
|
|
|
|
|
|
|
alpha_number_of_iterations: int = field(default=0)
|
|
|
|
|
|
|
|
|
|
## augmentation
|
|
|
|
|
Parameters used for data augmentation.
|
|
|
|
|
|
|
|
|
|
crop_width_in_pixel: int = field(default=2)
|
|
|
|
|
|
|
|
|
|
flip_p: float = field(default=0.5)
|
|
|
|
|
|
|
|
|
|
jitter_brightness: float = field(default=0.5)
|
|
|
|
|
jitter_contrast: float = field(default=0.1)
|
|
|
|
|
jitter_saturation: float = field(default=0.1)
|
|
|
|
|
jitter_hue: float = field(default=0.15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## ImageStatistics (please ignore)
|
|
|
|
|
(Statistical) information about the input. i.e. mean values and the x and y size of the input
|
|
|
|
|
|
|
|
|
|
mean: list[float] = field(default_factory=list)
|
|
|
|
|
the_size: list[int] = field(default_factory=list)
|