364f7917eb
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
266 lines
8.1 KiB
Markdown
266 lines
8.1 KiB
Markdown
# Linearize the spectral coherence
|
|
{:.no_toc}
|
|
|
|
<nav markdown="1" class="toc-class">
|
|
* TOC
|
|
{:toc}
|
|
</nav>
|
|
|
|
## Top
|
|
|
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
|
|
|
Let us assume we have two time series (white in spectrum) $x_1(t)$ and $x_2(t)$. Both are linearly mixed together via a mixing coefficent $\alpha$:
|
|
|
|
$$y(t) = (1- \alpha) x_1(t) + \alpha * x_2(t)$$
|
|
|
|
Wouldn't it to be nice if the spectral coherence would be $\alpha$?
|
|
|
|
For white times series with the length of infinity this can be achived via the transformation
|
|
|
|
```python
|
|
coherence_scaled = 1.0 / (1.0 + np.sqrt((1.0 / coherence) - 1.0))
|
|
```
|
|
see [Attention Selectively Gates Afferent Signal Transmission to Area V4](https://www.jneurosci.org/content/38/14/3441) for details
|
|
|
|
The emphesis lies on infinity and a white spectrum. For shorter time series the results might vary.
|
|
|
|
![image0.png](image0.png)
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pywt # type: ignore
|
|
from tqdm import trange # type: ignore
|
|
|
|
|
|
# Calculate the wavelet scales we requested
|
|
def calculate_wavelet_scale(
|
|
number_of_frequences: int,
|
|
frequency_range_min: float,
|
|
frequency_range_max: float,
|
|
dt: float,
|
|
) -> np.ndarray:
|
|
s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2(
|
|
frequency_range_max / frequency_range_min
|
|
)
|
|
scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing)
|
|
frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale)
|
|
return 1.0 / (frequency_axis_request * dt)
|
|
|
|
|
|
def get_y_ticks(
|
|
reduction_to_ticks: int, frequency_axis: np.ndarray, round: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
output_ticks = np.arange(
|
|
0,
|
|
frequency_axis.shape[0],
|
|
int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)),
|
|
)
|
|
if round < 0:
|
|
output_freq = frequency_axis[output_ticks]
|
|
else:
|
|
output_freq = np.round(frequency_axis[output_ticks], round)
|
|
return output_ticks, output_freq
|
|
|
|
|
|
def get_x_ticks(
|
|
reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int
|
|
) -> tuple[np.ndarray, np.ndarray]:
|
|
time_axis = dt * np.arange(0, number_of_timesteps)
|
|
output_ticks = np.arange(
|
|
0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks))
|
|
)
|
|
if round < 0:
|
|
output_time_axis = time_axis[output_ticks]
|
|
else:
|
|
output_time_axis = np.round(time_axis[output_ticks], round)
|
|
return output_ticks, output_time_axis
|
|
|
|
|
|
def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray):
|
|
wave_scales = 1.0 / (frequency_axis * dt)
|
|
cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64)
|
|
return cone_of_influence
|
|
|
|
|
|
def mask_cone_of_influence(
|
|
complex_spectrum: np.ndarray,
|
|
cone_of_influence: np.ndarray,
|
|
fill_value: float = np.NaN,
|
|
) -> np.ndarray:
|
|
assert complex_spectrum.shape[0] == cone_of_influence.shape[0]
|
|
|
|
for frequency_id in range(0, cone_of_influence.shape[0]):
|
|
# Front side
|
|
start_id: int = 0
|
|
end_id: int = int(
|
|
np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1]))
|
|
)
|
|
complex_spectrum[frequency_id, start_id:end_id] = fill_value
|
|
|
|
start_id = np.max(
|
|
(
|
|
complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1,
|
|
0,
|
|
)
|
|
)
|
|
end_id = complex_spectrum.shape[1]
|
|
complex_spectrum[frequency_id, start_id:end_id] = fill_value
|
|
|
|
return complex_spectrum
|
|
|
|
|
|
def calculate_wavelet_tf_complex_coeffs(
|
|
data: np.ndarray,
|
|
number_of_frequences: int = 25,
|
|
frequency_range_min: float = 15,
|
|
frequency_range_max: float = 200,
|
|
dt: float = 1.0 / 1000,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
|
|
assert data.ndim == 1
|
|
t: np.ndarray = np.arange(0, data.shape[0]) * dt
|
|
|
|
# The wavelet we want to use
|
|
mother = pywt.ContinuousWavelet("cmor1.5-1.0")
|
|
|
|
wave_scales = calculate_wavelet_scale(
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
complex_spectrum, frequency_axis = pywt.cwt(
|
|
data=data, scales=wave_scales, wavelet=mother, sampling_period=dt
|
|
)
|
|
|
|
return (complex_spectrum, frequency_axis, t)
|
|
|
|
|
|
def calculate_spectral_coherence(
|
|
n_trials: int,
|
|
y_a: np.ndarray,
|
|
y_b: np.ndarray,
|
|
number_of_frequences: int,
|
|
frequency_range_min: float,
|
|
frequency_range_max: float,
|
|
dt: float,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
|
|
|
for trial_id in range(0, n_trials):
|
|
wave_data_a, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
|
data=y_a[..., trial_id],
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
wave_data_b, frequency_axis, t = calculate_wavelet_tf_complex_coeffs(
|
|
data=y_b[..., trial_id],
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
cone_of_influence = calculate_cone_of_influence(dt, frequency_axis)
|
|
|
|
wave_data_a = mask_cone_of_influence(
|
|
complex_spectrum=wave_data_a,
|
|
cone_of_influence=cone_of_influence,
|
|
fill_value=np.NaN,
|
|
)
|
|
|
|
wave_data_b = mask_cone_of_influence(
|
|
complex_spectrum=wave_data_b,
|
|
cone_of_influence=cone_of_influence,
|
|
fill_value=np.NaN,
|
|
)
|
|
|
|
if trial_id == 0:
|
|
calculation = wave_data_a * np.conj(wave_data_b)
|
|
norm_data_a = np.abs(wave_data_a) ** 2
|
|
norm_data_b = np.abs(wave_data_b) ** 2
|
|
|
|
else:
|
|
calculation += wave_data_a * np.conj(wave_data_b)
|
|
norm_data_a += np.abs(wave_data_a) ** 2
|
|
norm_data_b += np.abs(wave_data_b) ** 2
|
|
|
|
calculation /= float(n_trials)
|
|
norm_data_a /= float(n_trials)
|
|
norm_data_b /= float(n_trials)
|
|
|
|
coherence = np.abs(calculation) ** 2 / ((norm_data_a * norm_data_b) + 1e-20)
|
|
|
|
return np.nanmean(coherence, axis=-1), frequency_axis, t
|
|
|
|
|
|
# Parameters for the wavelet transform
|
|
number_of_frequences: int = 3 # frequency bands
|
|
frequency_range_min: float = 5 # Hz
|
|
frequency_range_max: float = 200 # Hz
|
|
dt: float = 1.0 / 1000.0
|
|
|
|
# Test data ->
|
|
n_t: int = 10000
|
|
n_trials: int = 100
|
|
|
|
# We select one frequency because all look the same for this white random signal
|
|
frequency_select: int = 1
|
|
|
|
rng = np.random.default_rng(1)
|
|
mother_time_series_a: np.ndarray = rng.random((n_t, n_trials))
|
|
mother_time_series_a -= mother_time_series_a.mean(axis=0, keepdims=True)
|
|
mother_time_series_a /= mother_time_series_a.std(axis=0, keepdims=True)
|
|
|
|
mother_time_series_b: np.ndarray = rng.random((n_t, n_trials))
|
|
mother_time_series_b -= mother_time_series_b.mean(axis=0, keepdims=True)
|
|
mother_time_series_b /= mother_time_series_b.std(axis=0, keepdims=True)
|
|
# <- Test data
|
|
|
|
alpha_vector: np.ndarray = np.linspace(0.0, 1.0, 11, endpoint=True)
|
|
|
|
|
|
for alpha_id in trange(0, alpha_vector.shape[0]):
|
|
|
|
alpha: float = alpha_vector[alpha_id]
|
|
|
|
y_a = mother_time_series_a.copy()
|
|
y_b = (1.0 - alpha) * mother_time_series_a + alpha * mother_time_series_b
|
|
|
|
y_b -= y_b.mean(axis=0, keepdims=True)
|
|
y_b /= y_b.std(axis=0, keepdims=True)
|
|
|
|
temp, frequency_axis, t = calculate_spectral_coherence(
|
|
n_trials=n_trials,
|
|
y_a=y_a,
|
|
y_b=y_b,
|
|
number_of_frequences=number_of_frequences,
|
|
frequency_range_min=frequency_range_min,
|
|
frequency_range_max=frequency_range_max,
|
|
dt=dt,
|
|
)
|
|
|
|
if alpha_id == 0:
|
|
coherence: np.ndarray = np.zeros((temp.shape[0], alpha_vector.shape[0]))
|
|
coherence[:, alpha_id] = temp
|
|
|
|
|
|
coherence_scaled = 1.0 / (1.0 + np.sqrt((1.0 / coherence) - 1.0))
|
|
|
|
plt.plot(alpha_vector, coherence[frequency_select, :], label="unscaled")
|
|
plt.plot(alpha_vector, coherence_scaled[frequency_select, :], label="scaled")
|
|
plt.plot([0.5, 0.5], [0, 1], "k--")
|
|
plt.plot([0, 1], [0.5, 0.5], "k--")
|
|
plt.ylabel("Spectral Coherence")
|
|
plt.xlabel("Mixture Coefficent")
|
|
plt.legend()
|
|
plt.show()
|
|
```
|
|
|
|
|
|
|