038a3a44a0
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
503 lines
14 KiB
Markdown
503 lines
14 KiB
Markdown
# Numba
|
||
{:.no_toc}
|
||
|
||
<nav markdown="1" class="toc-class">
|
||
* TOC
|
||
{:toc}
|
||
</nav>
|
||
|
||
## The goal
|
||
|
||
["Numba is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."](https://numba.pydata.org/)
|
||
|
||
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
||
|
||
```shell
|
||
pip install numba
|
||
```
|
||
|
||
[A ~5 minute guide to Numba](https://numba.pydata.org/numba-doc/latest/user/5minguide.html)
|
||
|
||
## [Numba basic types](https://numba.pydata.org/numba-doc/dev/reference/types.html)
|
||
|
||
For the example that will show you the options of optimization we need to understand the numba naming schema.
|
||
|
||
### Numbers
|
||
|
||
For the function signatures we need to be able to translate the usual np.dtype into numpy.types.
|
||
|
||
For doing so we just replace **np.** by **numba.types.** .
|
||
|
||
|Type name(s)| Shorthand| Comments|
|
||
|---|---|---|
|
||
|numba.types.boolean |b1| represented as a byte|
|
||
|numba.types.uint8, byte |u1| 8-bit unsigned byte|
|
||
|numba.types.uint16 |u2| 16-bit unsigned integer|
|
||
|numba.types.uint32 |u4| 32-bit unsigned integer|
|
||
|numba.types.uint64 |u8| 64-bit unsigned integer|
|
||
|numba.types.int8, char |i1| 8-bit signed byte|
|
||
|numba.types.int16 |i2| 16-bit signed integer|
|
||
|numba.types.int32 |i4| 32-bit signed integer|
|
||
|numba.types.int64 |i8| 64-bit signed integer|
|
||
|numba.types.intc |–| C int-sized integer|
|
||
|numba.types.uintc |–| C int-sized unsigned integer|
|
||
|numba.types.intp |–| pointer-sized integer|
|
||
|numba.types.uintp |–| pointer-sized unsigned integer|
|
||
|numba.types.float32| f4| single-precision floating-point number|
|
||
|numba.types.float64, double| f8| double-precision floating-point number|
|
||
|numba.types.complex64| c8| single-precision complex number|
|
||
|numba.types.complex128| c16| double-precision complex number|
|
||
|
||
### Arrays
|
||
|
||
If we have arrays in the function signature, which is a very likely senario, we might want to give as much information to numpy as possible about the numpy.ndarray. In some cases it is very benificial to make a np.ndarray an array with C memory layout and tell numba about it.
|
||
|
||
We can use the numpy function **numpy.ascontiguousarray for** converting a numpy array into a C memory layout.
|
||
|
||
We can also check a numpy array, let's call it X, if it is already in the C memory layout. This is done by looking at **X.flags['C_CONTIGUOUS']**.
|
||
|
||
Some example for array signatures are:
|
||
|
||
|||
|
||
|---|---|
|
||
|numba.types.float32[:]| 1d array of float32 with no particular memory layout|
|
||
|numba.types.float32[:,:]| 2d array of float32 with no particular memory layout|
|
||
|numba.types.float32[:,:,:]| 3d array of float32 with no particular memory layout|
|
||
|numba.types.float32[::1]| 1d array of float32 with C memory layout|
|
||
|numba.types.float32[:,::1]| 2d array of float32 with C memory layout|
|
||
|numba.types.float32[:,:,::1]| 3d array of float32 with C memory layout|
|
||
|numba.types.float32[::1,:]| 2d array of float32 with Fortran memory layout|
|
||
|numba.types.float32[::1,:,:]| 3d array of float32 with Fortran memory layout|
|
||
|
||
## An example (up to 437x faster)
|
||
|
||
For measuring the time used by the program I ran everything twice and took the second time. I did this is because the just-in-time compilation takes a moment for the first call of a function.
|
||
|
||
### Basis code (7.76 sec)
|
||
|
||
This is the basic code without any optimizations.
|
||
|
||
```python
|
||
import time
|
||
import numpy as np
|
||
|
||
|
||
def get_spike(
|
||
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
|
||
) -> np.uint64:
|
||
|
||
summation: np.float64 = np.float64(0.0)
|
||
|
||
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||
|
||
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||
summation += h[i]
|
||
|
||
if random_number <= summation:
|
||
output = np.uint64(i)
|
||
return output
|
||
|
||
return output
|
||
|
||
|
||
def main(
|
||
number_of_iterations: np.uint64,
|
||
number_of_neurons: np.uint64,
|
||
random_number_spikes: np.ndarray,
|
||
random_number_h: np.ndarray,
|
||
) -> np.ndarray:
|
||
|
||
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||
|
||
for i in range(0, number_of_iterations):
|
||
h = random_number_h[i, :]
|
||
h /= h.sum()
|
||
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||
|
||
return results
|
||
|
||
|
||
if __name__ == "__main__":
|
||
number_of_iterations: np.uint64 = np.uint64(10000)
|
||
number_of_neurons: np.uint64 = np.uint64(10000)
|
||
myrng = np.random.default_rng()
|
||
|
||
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
|
||
random_number_h = myrng.random(
|
||
(number_of_iterations, number_of_neurons), dtype=np.float64
|
||
)
|
||
|
||
start_time = time.perf_counter()
|
||
results = main(
|
||
number_of_iterations=number_of_iterations,
|
||
number_of_neurons=number_of_neurons,
|
||
random_number_spikes=random_number_spikes,
|
||
random_number_h=random_number_h,
|
||
)
|
||
end_time = time.perf_counter()
|
||
|
||
check_for_errors = np.sum([results >= number_of_neurons])
|
||
if check_for_errors > 0:
|
||
print("Something went really wrong! Panic!")
|
||
print(f"{end_time-start_time:.5f} sec")
|
||
print(results[0:10])
|
||
```
|
||
|
||
### Optimization 1 (0.482sec)
|
||
|
||
|
||
We add just-in-time compilation to the function get_spike with @njit(cache=True). ["To avoid compilation times each time you invoke a Python program, you can instruct Numba to write the result of function compilation into a file-based cache."](https://numba.pydata.org/numba-doc/latest/user/jit.html#cache)
|
||
|
||
```python
|
||
import time
|
||
import numpy as np
|
||
from numba import njit
|
||
|
||
|
||
@njit(cache=True)
|
||
def get_spike(
|
||
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
|
||
) -> np.uint64:
|
||
|
||
summation: np.float64 = np.float64(0.0)
|
||
|
||
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||
|
||
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||
summation += h[i]
|
||
|
||
if random_number <= summation:
|
||
output = np.uint64(i)
|
||
return output
|
||
|
||
return output
|
||
|
||
|
||
def main(
|
||
number_of_iterations: np.uint64,
|
||
number_of_neurons: np.uint64,
|
||
random_number_spikes: np.ndarray,
|
||
random_number_h: np.ndarray,
|
||
) -> np.ndarray:
|
||
|
||
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||
|
||
for i in range(0, number_of_iterations):
|
||
h = random_number_h[i, :]
|
||
h /= h.sum()
|
||
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||
|
||
return results
|
||
|
||
|
||
if __name__ == "__main__":
|
||
number_of_iterations: np.uint64 = np.uint64(10000)
|
||
number_of_neurons: np.uint64 = np.uint64(10000)
|
||
myrng = np.random.default_rng()
|
||
|
||
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
|
||
random_number_h = myrng.random(
|
||
(number_of_iterations, number_of_neurons), dtype=np.float64
|
||
)
|
||
|
||
start_time = time.perf_counter()
|
||
results = main(
|
||
number_of_iterations=number_of_iterations,
|
||
number_of_neurons=number_of_neurons,
|
||
random_number_spikes=random_number_spikes,
|
||
random_number_h=random_number_h,
|
||
)
|
||
end_time = time.perf_counter()
|
||
|
||
check_for_errors = np.sum([results >= number_of_neurons])
|
||
if check_for_errors > 0:
|
||
print("Something went really wrong! Panic!")
|
||
print(f"{end_time-start_time:.5f} sec")
|
||
print(results[0:10])
|
||
```
|
||
|
||
|
||
### Optimization 2 (0.627sec)
|
||
|
||
We also add just-in-time compilation to the function main with @njit(cache=True).
|
||
|
||
```python
|
||
import time
|
||
import numpy as np
|
||
from numba import njit
|
||
|
||
|
||
@njit(cache=True)
|
||
def get_spike(
|
||
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
|
||
) -> np.uint64:
|
||
|
||
summation: np.float64 = np.float64(0.0)
|
||
|
||
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||
|
||
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||
summation += h[i]
|
||
|
||
if random_number <= summation:
|
||
output = np.uint64(i)
|
||
return output
|
||
|
||
return output
|
||
|
||
|
||
@njit(cache=True)
|
||
def main(
|
||
number_of_iterations: np.uint64,
|
||
number_of_neurons: np.uint64,
|
||
random_number_spikes: np.ndarray,
|
||
random_number_h: np.ndarray,
|
||
) -> np.ndarray:
|
||
|
||
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||
|
||
for i in range(0, number_of_iterations):
|
||
h = random_number_h[i, :]
|
||
h /= h.sum()
|
||
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||
|
||
return results
|
||
|
||
|
||
if __name__ == "__main__":
|
||
number_of_iterations: np.uint64 = np.uint64(10000)
|
||
number_of_neurons: np.uint64 = np.uint64(10000)
|
||
myrng = np.random.default_rng()
|
||
|
||
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
|
||
random_number_h = myrng.random(
|
||
(number_of_iterations, number_of_neurons), dtype=np.float64
|
||
)
|
||
|
||
start_time = time.perf_counter()
|
||
results = main(
|
||
number_of_iterations=number_of_iterations,
|
||
number_of_neurons=number_of_neurons,
|
||
random_number_spikes=random_number_spikes,
|
||
random_number_h=random_number_h,
|
||
)
|
||
end_time = time.perf_counter()
|
||
|
||
check_for_errors = np.sum([results >= number_of_neurons])
|
||
if check_for_errors > 0:
|
||
print("Something went really wrong! Panic!")
|
||
print(f"{end_time-start_time:.5f} sec")
|
||
print(results[0:10])
|
||
```
|
||
|
||
### Optimization 3 (0.619sec)
|
||
|
||
We add [function signatures](https://numba.pydata.org/numba-doc/latest/reference/types.html) to the code with:
|
||
|
||
```python
|
||
@njit(
|
||
numba.types.uint64(numba.types.float64[:], numba.types.uint64, numba.types.float64),
|
||
cache=True,
|
||
)
|
||
def get_spike(
|
||
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
|
||
) -> np.uint64:
|
||
|
||
|
||
[...]
|
||
|
||
@njit(
|
||
numba.types.uint64[:](
|
||
numba.types.uint64,
|
||
numba.types.uint64,
|
||
numba.types.float64[:],
|
||
numba.types.float64[:, :],
|
||
),
|
||
cache=True,
|
||
)
|
||
def main(
|
||
number_of_iterations: np.uint64,
|
||
number_of_neurons: np.uint64,
|
||
random_number_spikes: np.ndarray,
|
||
random_number_h: np.ndarray,
|
||
) -> np.ndarray:
|
||
```
|
||
|
||
|
||
```python
|
||
import time
|
||
import numpy as np
|
||
from numba import njit
|
||
import numba
|
||
|
||
|
||
@njit(
|
||
numba.types.uint64(numba.types.float64[:], numba.types.uint64, numba.types.float64),
|
||
cache=True,
|
||
)
|
||
def get_spike(
|
||
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
|
||
) -> np.uint64:
|
||
|
||
summation: np.float64 = np.float64(0.0)
|
||
|
||
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||
|
||
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||
summation += h[i]
|
||
|
||
if random_number <= summation:
|
||
output = np.uint64(i)
|
||
return output
|
||
|
||
return output
|
||
|
||
|
||
@njit(
|
||
numba.types.uint64[:](
|
||
numba.types.uint64,
|
||
numba.types.uint64,
|
||
numba.types.float64[:],
|
||
numba.types.float64[:, :],
|
||
),
|
||
cache=True,
|
||
)
|
||
def main(
|
||
number_of_iterations: np.uint64,
|
||
number_of_neurons: np.uint64,
|
||
random_number_spikes: np.ndarray,
|
||
random_number_h: np.ndarray,
|
||
) -> np.ndarray:
|
||
|
||
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||
|
||
for i in range(0, number_of_iterations):
|
||
h = random_number_h[i, :]
|
||
h /= h.sum()
|
||
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||
|
||
return results
|
||
|
||
|
||
if __name__ == "__main__":
|
||
number_of_iterations: np.uint64 = np.uint64(10000)
|
||
number_of_neurons: np.uint64 = np.uint64(10000)
|
||
myrng = np.random.default_rng()
|
||
|
||
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
|
||
random_number_h = myrng.random(
|
||
(number_of_iterations, number_of_neurons), dtype=np.float64
|
||
)
|
||
|
||
start_time = time.perf_counter()
|
||
results = main(
|
||
number_of_iterations=number_of_iterations,
|
||
number_of_neurons=number_of_neurons,
|
||
random_number_spikes=random_number_spikes,
|
||
random_number_h=random_number_h,
|
||
)
|
||
end_time = time.perf_counter()
|
||
|
||
check_for_errors = np.sum([results >= number_of_neurons])
|
||
if check_for_errors > 0:
|
||
print("Something went really wrong! Panic!")
|
||
print(f"{end_time-start_time:.5f} sec")
|
||
print(results[0:10])
|
||
```
|
||
|
||
### Optimization 4 (0.419sec)
|
||
|
||
We tell numba about the [C memory layout](https://numba.pydata.org/numba-doc/latest/reference/types.html#arrays) of the arrays with refining the function signature:
|
||
|
||
```python
|
||
@njit(
|
||
numba.types.uint64[::1](
|
||
numba.types.uint64,
|
||
numba.types.uint64,
|
||
numba.types.float64[::1],
|
||
numba.types.float64[:, ::1],
|
||
),
|
||
cache=True,
|
||
)
|
||
```
|
||
|
||
```python
|
||
import time
|
||
import numpy as np
|
||
from numba import njit
|
||
import numba
|
||
|
||
|
||
@njit(
|
||
numba.types.uint64(numba.types.float64[:], numba.types.uint64, numba.types.float64),
|
||
cache=True,
|
||
)
|
||
def get_spike(
|
||
h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
|
||
) -> np.uint64:
|
||
|
||
summation: np.float64 = np.float64(0.0)
|
||
|
||
output: np.uint64 = np.uint64(number_of_neurons - 1)
|
||
|
||
for i in range(0, np.uint64(number_of_neurons - 1)):
|
||
summation += h[i]
|
||
|
||
if random_number <= summation:
|
||
output = np.uint64(i)
|
||
return output
|
||
|
||
return output
|
||
|
||
|
||
@njit(
|
||
numba.types.uint64[::1](
|
||
numba.types.uint64,
|
||
numba.types.uint64,
|
||
numba.types.float64[::1],
|
||
numba.types.float64[:, ::1],
|
||
),
|
||
cache=True,
|
||
)
|
||
def main(
|
||
number_of_iterations: np.uint64,
|
||
number_of_neurons: np.uint64,
|
||
random_number_spikes: np.ndarray,
|
||
random_number_h: np.ndarray,
|
||
) -> np.ndarray:
|
||
|
||
results = np.zeros((number_of_iterations), dtype=np.uint64)
|
||
|
||
for i in range(0, number_of_iterations):
|
||
h = random_number_h[i, :]
|
||
h /= h.sum()
|
||
results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])
|
||
|
||
return results
|
||
|
||
|
||
if __name__ == "__main__":
|
||
number_of_iterations: np.uint64 = np.uint64(10000)
|
||
number_of_neurons: np.uint64 = np.uint64(10000)
|
||
myrng = np.random.default_rng()
|
||
|
||
random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
|
||
random_number_h = myrng.random(
|
||
(number_of_iterations, number_of_neurons), dtype=np.float64
|
||
)
|
||
|
||
start_time = time.perf_counter()
|
||
results = main(
|
||
number_of_iterations=number_of_iterations,
|
||
number_of_neurons=number_of_neurons,
|
||
random_number_spikes=random_number_spikes,
|
||
random_number_h=random_number_h,
|
||
)
|
||
end_time = time.perf_counter()
|
||
|
||
check_for_errors = np.sum([results >= number_of_neurons])
|
||
if check_for_errors > 0:
|
||
print("Something went really wrong! Panic!")
|
||
print(f"{end_time-start_time:.5f} sec")
|
||
print(results[0:10])
|
||
```
|