981a026a9a
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
89 lines
1.7 KiB
Markdown
89 lines
1.7 KiB
Markdown
# Meshgrid
|
|
{:.no_toc}
|
|
|
|
<nav markdown="1" class="toc-class">
|
|
* TOC
|
|
{:toc}
|
|
</nav>
|
|
|
|
## The goal
|
|
|
|
|
|
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
|
|
|
|
## [numpy.meshgrid](https://numpy.org/doc/stable/reference/generated/numpy.meshgrid.html)
|
|
|
|
|
|
```python
|
|
numpy.meshgrid(*xi, copy=True, sparse=False, indexing='xy')
|
|
```
|
|
|
|
> Return a list of coordinate matrices from coordinate vectors.
|
|
>
|
|
> Make N-D coordinate arrays for vectorized evaluations of N-D scalar/vector fields over N-D grids, given one-dimensional coordinate arrays x1, x2,…, xn.
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
x = np.linspace(0, 1, 100)
|
|
y = np.linspace(0, 1, 100)
|
|
|
|
xv, yv = np.meshgrid(x, y)
|
|
|
|
plt.imshow(xv, cmap="hot")
|
|
plt.xlabel("x axis")
|
|
plt.ylabel("y axis")
|
|
plt.title("xv")
|
|
plt.show()
|
|
|
|
plt.imshow(yv, cmap="hot")
|
|
plt.xlabel("x axis")
|
|
plt.ylabel("y axis")
|
|
plt.title("yv")
|
|
plt.show()
|
|
```
|
|
|
|
![image0](image0.png)
|
|
|
|
![image1](image1.png)
|
|
|
|
An example:
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
x = np.linspace(0, 1, 100)
|
|
y = np.linspace(0, 1, 100)
|
|
|
|
xv, yv = np.meshgrid(x, y)
|
|
|
|
a = np.sin(xv * 2 * np.pi) * np.sin(yv * 8 * np.pi)
|
|
|
|
plt.imshow(a, cmap="hot")
|
|
plt.xlabel("x axis")
|
|
plt.ylabel("y axis")
|
|
plt.show()
|
|
```
|
|
|
|
![image2](image2.png)
|
|
|
|
**The question is if you really need a mesh or if just using broadcasting can do the job too.** I guess this depends on your need.
|
|
|
|
```python
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
x = np.linspace(0, 1, 100)[np.newaxis, :]
|
|
y = np.linspace(0, 1, 100)[:, np.newaxis]
|
|
|
|
a = np.sin(x * 2 * np.pi) * np.sin(y * 8 * np.pi)
|
|
|
|
plt.imshow(a, cmap="hot")
|
|
plt.xlabel("x axis")
|
|
plt.ylabel("y axis")
|
|
plt.show()
|
|
```
|
|
|
|
![image3](image3.png)
|